{"title":"WikiLabel: an encyclopedic approach to labeling documents en masse","authors":"Tadashi Nomoto","doi":"10.1145/2063576.2063961","DOIUrl":null,"url":null,"abstract":"This paper presents a particular approach to collective labeling of multiple documents, which works by associating the documents with Wikipedia pages and labeling them with headings the pages carry. The approach has an obvious advantage over past approaches in that it is able to produce fluent labels, as they are hand-written by human editors. We carried out some experiments on the TDT5 dataset, which found that the approach works rather robustly for an arbitrary set of documents in the news domain. Comparisons were made with some baselines, including the state of the art, with results strongly in favor of our approach.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"124 1","pages":"2341-2344"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper presents a particular approach to collective labeling of multiple documents, which works by associating the documents with Wikipedia pages and labeling them with headings the pages carry. The approach has an obvious advantage over past approaches in that it is able to produce fluent labels, as they are hand-written by human editors. We carried out some experiments on the TDT5 dataset, which found that the approach works rather robustly for an arbitrary set of documents in the news domain. Comparisons were made with some baselines, including the state of the art, with results strongly in favor of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
维基标签:一个百科全书式的标记文档的方法
本文提出了一种对多个文档进行集体标记的特殊方法,该方法将文档与维基百科页面相关联,并用页面携带的标题标记它们。与过去的方法相比,该方法有一个明显的优势,因为它能够生成流畅的标签,因为它们是由人类编辑手工编写的。我们在TDT5数据集上进行了一些实验,发现该方法对于新闻领域中的任意一组文档都非常有效。与一些基线进行比较,包括最先进的状态,结果强烈支持我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
scACT: Accurate Cross-modality Translation via Cycle-consistent Training from Unpaired Single-cell Data. iMIRACLE: an Iterative Multi-View Graph Neural Network to Model Intercellular Gene Regulation from Spatial Transcriptomic Data. Federated Node Classification over Distributed Ego-Networks with Secure Contrastive Embedding Sharing. Enabling Health Data Sharing with Fine-Grained Privacy. MedCV: An Interactive Visualization System for Patient Cohort Identification from Medical Claim Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1