{"title":"Kinetics of Magnesium Incorporation into Water Soluble Porphyrins","authors":"Sabrina L. Bailey, P. Hambright","doi":"10.1515/irm-2001-0106","DOIUrl":null,"url":null,"abstract":"Abstract The kinetics of Mg2+ incorporation into the three water soluble porphyrin isomers of the relatively planar cationic tetrakis(N-Methyl-X-pyridyl)porphyrins (X = 2,3, or 4) were studied from pH 6.5 to 8.9 at 25 °C, I = 2.6. The reactions were first order in both porphyrin and magnesium ion concentrations, and the specific rate constants increased with an increase in pH. The proposed mechanism involves Mg2+ reacting with the differing centrally protonated forms of these porphyrins, in the order Ρ 2-> H-P-\" > H2-P. Various other porphyrins were substantially less reactive. In contrast, Mg reacts orders of magnitude faster with the non-planar ß-octabromo-tetra(N-methyl-4-pyridyI) porphyrin, where the reaction proceeds almost exclusively through the Mg2+ + P2- pathway. As compared to other metal ions, the relatively slow incorporation of Mg2+ into porphyrins is in part a consequence of the comparatively slow water exchange rate constant for the aquo Mg2+ ion.","PeriodicalId":8996,"journal":{"name":"BioInorganic Reaction Mechanisms","volume":"13 1","pages":"51 - 62"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioInorganic Reaction Mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/irm-2001-0106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract The kinetics of Mg2+ incorporation into the three water soluble porphyrin isomers of the relatively planar cationic tetrakis(N-Methyl-X-pyridyl)porphyrins (X = 2,3, or 4) were studied from pH 6.5 to 8.9 at 25 °C, I = 2.6. The reactions were first order in both porphyrin and magnesium ion concentrations, and the specific rate constants increased with an increase in pH. The proposed mechanism involves Mg2+ reacting with the differing centrally protonated forms of these porphyrins, in the order Ρ 2-> H-P-" > H2-P. Various other porphyrins were substantially less reactive. In contrast, Mg reacts orders of magnitude faster with the non-planar ß-octabromo-tetra(N-methyl-4-pyridyI) porphyrin, where the reaction proceeds almost exclusively through the Mg2+ + P2- pathway. As compared to other metal ions, the relatively slow incorporation of Mg2+ into porphyrins is in part a consequence of the comparatively slow water exchange rate constant for the aquo Mg2+ ion.