{"title":"A Hybrid Knowledge and Transformer-Based Model for Event Detection with Automatic Self-Attention Threshold, Layer and Head Selection","authors":"Thierry Desot, Orphée De Clercq, Veronique Hoste","doi":"10.18653/v1/2022.case-1.4","DOIUrl":null,"url":null,"abstract":"Event and argument role detection are frequently conceived as separate tasks. In this work we conceive both processes as one taskin a hybrid event detection approach. Its main component is based on automatic keyword extraction (AKE) using the self-attention mechanism of a BERT transformer model. As a bottleneck for AKE is defining the threshold of the attention values, we propose a novel method for automatic self-attention thresholdselection. It is fueled by core event information, or simply the verb and its arguments as the backbone of an event. These are outputted by a knowledge-based syntactic parser. In a secondstep the event core is enriched with other semantically salient words provided by the transformer model. Furthermore, we propose an automatic self-attention layer and head selectionmechanism, by analyzing which self-attention cells in the BERT transformer contribute most to the hybrid event detection and which linguistic tasks they represent. This approach was integrated in a pipeline event extraction approachand outperforms three state of the art multi-task event extraction methods.","PeriodicalId":80307,"journal":{"name":"The Case manager","volume":"17 1","pages":"21-31"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Case manager","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.case-1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Event and argument role detection are frequently conceived as separate tasks. In this work we conceive both processes as one taskin a hybrid event detection approach. Its main component is based on automatic keyword extraction (AKE) using the self-attention mechanism of a BERT transformer model. As a bottleneck for AKE is defining the threshold of the attention values, we propose a novel method for automatic self-attention thresholdselection. It is fueled by core event information, or simply the verb and its arguments as the backbone of an event. These are outputted by a knowledge-based syntactic parser. In a secondstep the event core is enriched with other semantically salient words provided by the transformer model. Furthermore, we propose an automatic self-attention layer and head selectionmechanism, by analyzing which self-attention cells in the BERT transformer contribute most to the hybrid event detection and which linguistic tasks they represent. This approach was integrated in a pipeline event extraction approachand outperforms three state of the art multi-task event extraction methods.