Regularized classical optimality conditions in iterative form for convex optimization problems for distributed Volterra-type systems

Pub Date : 2021-06-01 DOI:10.35634/vm210208
V. Sumin, M. I. Sumin
{"title":"Regularized classical optimality conditions in iterative form for convex optimization problems for distributed Volterra-type systems","authors":"V. Sumin, M. I. Sumin","doi":"10.35634/vm210208","DOIUrl":null,"url":null,"abstract":"We consider the regularization of the classical optimality conditions (COCs) — the Lagrange principle and the Pontryagin maximum principle — in a convex optimal control problem with functional constraints of equality and inequality type. The system to be controlled is given by a general linear functional-operator equation of the second kind in the space $L^m_2$, the main operator of the right-hand side of the equation is assumed to be quasinilpotent. The objective functional of the problem is strongly convex. Obtaining regularized COCs in iterative form is based on the use of the iterative dual regularization method. The main purpose of the regularized Lagrange principle and the Pontryagin maximum principle obtained in the work in iterative form is stable generation of minimizing approximate solutions in the sense of J. Warga. Regularized COCs in iterative form are formulated as existence theorems in the original problem of minimizing approximate solutions. They “overcome” the ill-posedness properties of the COCs and are regularizing algorithms for solving optimization problems. As an illustrative example, we consider an optimal control problem associated with a hyperbolic system of first-order differential equations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm210208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider the regularization of the classical optimality conditions (COCs) — the Lagrange principle and the Pontryagin maximum principle — in a convex optimal control problem with functional constraints of equality and inequality type. The system to be controlled is given by a general linear functional-operator equation of the second kind in the space $L^m_2$, the main operator of the right-hand side of the equation is assumed to be quasinilpotent. The objective functional of the problem is strongly convex. Obtaining regularized COCs in iterative form is based on the use of the iterative dual regularization method. The main purpose of the regularized Lagrange principle and the Pontryagin maximum principle obtained in the work in iterative form is stable generation of minimizing approximate solutions in the sense of J. Warga. Regularized COCs in iterative form are formulated as existence theorems in the original problem of minimizing approximate solutions. They “overcome” the ill-posedness properties of the COCs and are regularizing algorithms for solving optimization problems. As an illustrative example, we consider an optimal control problem associated with a hyperbolic system of first-order differential equations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
分布式volterra型系统凸优化问题的正则经典迭代最优性条件
研究一类具有相等型和不等式型函数约束的凸最优控制问题的经典最优性条件(Lagrange原理和Pontryagin极大值原理)的正则化问题。在空间$L^m_2$上给出了待控制系统的第二类一般线性泛函算子方程,并假定方程右侧的主算子是拟无效的。该问题的目标泛函是强凸的。采用迭代对偶正则化方法得到迭代形式的正则化COCs。在迭代形式的工作中得到的正则拉格朗日原理和庞特里亚金极大原理的主要目的是稳定地生成J. Warga意义上的最小化近似解。将迭代形式的正则COCs表述为最小化近似解原问题的存在性定理。它们“克服”了coc的病态性质,是解决优化问题的正则化算法。作为一个说明性的例子,我们考虑与一阶微分方程双曲系统相关的最优控制问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1