A framework for anonymous routing in delay tolerant networks

Kazuya Sakai, Min-Te Sun, Wei-Shinn Ku, Jie Wu
{"title":"A framework for anonymous routing in delay tolerant networks","authors":"Kazuya Sakai, Min-Te Sun, Wei-Shinn Ku, Jie Wu","doi":"10.1109/ICNP.2017.8117531","DOIUrl":null,"url":null,"abstract":"Security and privacy issues are considered to be two of the most significant concerns to organizations and individuals using mobile applications. In this paper, we seek to address anonymous communications in delay tolerant networks (DTNs). While many different anonymous routing protocols have been proposed for ad hoc networks, to the best of our knowledge, only variants of onion-based routing have been tailored for DTNs. Since each type of anonymous routing protocol has its advantages and drawbacks, there is no single anonymous routing protocol for DTNs that can adapt to the different levels of security requirements. In this paper, we first design a set of anonymous routing protocols for DTNs, called anonymous Epidemic and zone-based anonymous routing, based on the original anonymous routing protocols for ad hoc networks. Then, we propose a framework of anonymous routing (FAR) for DTNs, which subsumes all the aforementioned protocols. By tuning its parameters, the proposed FAR is able to outperform onion-based, anonymous Epidemic, and zone-based routing. In addition, numerical analyses for the traceable rate and node anonymity models are built. Extensive simulations using randomly generated graphs as well as real traces are conducted to demonstrate that given appropriate parameter settings, our FAR outperforms all the existing anonymous routing protocols for DTNs.","PeriodicalId":6462,"journal":{"name":"2017 IEEE 25th International Conference on Network Protocols (ICNP)","volume":"9 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 25th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP.2017.8117531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Security and privacy issues are considered to be two of the most significant concerns to organizations and individuals using mobile applications. In this paper, we seek to address anonymous communications in delay tolerant networks (DTNs). While many different anonymous routing protocols have been proposed for ad hoc networks, to the best of our knowledge, only variants of onion-based routing have been tailored for DTNs. Since each type of anonymous routing protocol has its advantages and drawbacks, there is no single anonymous routing protocol for DTNs that can adapt to the different levels of security requirements. In this paper, we first design a set of anonymous routing protocols for DTNs, called anonymous Epidemic and zone-based anonymous routing, based on the original anonymous routing protocols for ad hoc networks. Then, we propose a framework of anonymous routing (FAR) for DTNs, which subsumes all the aforementioned protocols. By tuning its parameters, the proposed FAR is able to outperform onion-based, anonymous Epidemic, and zone-based routing. In addition, numerical analyses for the traceable rate and node anonymity models are built. Extensive simulations using randomly generated graphs as well as real traces are conducted to demonstrate that given appropriate parameter settings, our FAR outperforms all the existing anonymous routing protocols for DTNs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
容忍延迟网络中的匿名路由框架
安全性和隐私问题被认为是使用移动应用程序的组织和个人最关心的两个问题。在本文中,我们寻求解决延迟容忍网络(DTNs)中的匿名通信。虽然针对自组织网络已经提出了许多不同的匿名路由协议,但据我们所知,只有基于洋葱的路由变体为ddn量身定制。由于每种类型的匿名路由协议都有其优点和缺点,因此没有单一的ddn匿名路由协议可以适应不同级别的安全需求。本文首先在原有的ad hoc网络匿名路由协议的基础上,设计了一套用于dtn的匿名路由协议,称为匿名流行病和基于区域的匿名路由。然后,我们提出了一个包含上述所有协议的DTNs匿名路由(FAR)框架。通过调整其参数,所提出的FAR能够优于基于洋葱、匿名流行病和基于区域的路由。此外,还建立了可追踪率和节点匿名模型的数值分析。使用随机生成的图形和真实轨迹进行了广泛的模拟,以证明在适当的参数设置下,我们的FAR优于所有现有的dtn匿名路由协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-tier Collaborative Deep Reinforcement Learning for Non-terrestrial Network Empowered Vehicular Connections Message from the General Co-Chairs Algorithm-data driven optimization of adaptive communication networks Planning in compute-aggregate problems as optimization problems on graphs General ternary bit strings on commodity longest-prefix-match infrastructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1