Comparison of Automatic Question Generation Techniques

Walelign Tewabe Sewunetie, L. Kovács
{"title":"Comparison of Automatic Question Generation Techniques","authors":"Walelign Tewabe Sewunetie, L. Kovács","doi":"10.1109/CINTI-MACRo57952.2022.10029559","DOIUrl":null,"url":null,"abstract":"Automatic question generation is a technique that generates a question from various sources like structured or unstructured content. Even if, each method has its own shortcoming and strength, we didn’t find any study that did an experimental comparison of the current automatic question generation techniques using a similar dataset. In this study, we analyzed the different state-of-the-art research works, and we identified significant challenges of each model. In addition, we have used BLEU, METEOR, and ROUGE automatic evaluation metrics, to evaluate the experimental test result. From our evaluation result, we observed that most of the tested techniques score below 0.5 in all automated evaluation metrics. Out of tested techniques T5-transformer-based, scores the maximum result. This result point out this research area still needs further investigation and preparing standardized training.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"9 1","pages":"000025-000030"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI-MACRo57952.2022.10029559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Automatic question generation is a technique that generates a question from various sources like structured or unstructured content. Even if, each method has its own shortcoming and strength, we didn’t find any study that did an experimental comparison of the current automatic question generation techniques using a similar dataset. In this study, we analyzed the different state-of-the-art research works, and we identified significant challenges of each model. In addition, we have used BLEU, METEOR, and ROUGE automatic evaluation metrics, to evaluate the experimental test result. From our evaluation result, we observed that most of the tested techniques score below 0.5 in all automated evaluation metrics. Out of tested techniques T5-transformer-based, scores the maximum result. This result point out this research area still needs further investigation and preparing standardized training.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动问题生成技术的比较
自动问题生成是一种从各种来源(如结构化或非结构化内容)生成问题的技术。即使每种方法都有自己的缺点和优点,我们也没有发现任何使用类似数据集对当前自动问题生成技术进行实验比较的研究。在本研究中,我们分析了不同的最先进的研究工作,并确定了每个模型的重大挑战。此外,我们还使用BLEU、METEOR和ROUGE自动评估指标,对实验测试结果进行评估。从我们的评估结果中,我们观察到大多数测试技术在所有自动化评估度量中的得分低于0.5。在测试的技术t5变压器为基础,得分最高的结果。这一结果指出该研究领域仍需进一步调查和准备规范化培训。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Microstructure Patterns: Influence on Hydrophobic Properties of 3D-Printed Surfaces Optical and Morphological Characterization of Nanoscale Oxides Grown in Low-Energy H+-Implanted c-Silicon Extending Polymer Opal Structural Color Properties into the Near-Infrared Implementation of Numerical Model for Prediction of Temperature Distribution for Metallic-Coated Firefighter Protective Clothing A Microfluidic Paper-Based Lateral Flow Device for Quantitative ELISA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1