Mining Periodic Patterns from Non-binary Transactions

IF 2.2 Q3 COMPUTER SCIENCE, CYBERNETICS International Journal of Intelligent Computing and Cybernetics Pub Date : 2018-12-01 DOI:10.6025/jic/2018/9/4/144-156
Jhimli Adhikari
{"title":"Mining Periodic Patterns from Non-binary Transactions","authors":"Jhimli Adhikari","doi":"10.6025/jic/2018/9/4/144-156","DOIUrl":null,"url":null,"abstract":"Pattern with time period is more valuable because it can better describe objective knowledge. Previous studies on periodic patterns from market basket data focus on patterns without considering the items with their purchased quantities. But in real-life transactions, an item could be purchased multiple times in a transaction and different items may have different quantity in the transactions. To solve this problem, we incorporate the concept of transaction frequency (TF) and database frequency (DF) of an item in a time interval. Our algorithm works in two phases. In first phase we mined locally frequent item sets along with the set of intervals and their database frequency range and second phase mines the two types of periodic patterns (cyclic and acyclic) from the list of intervals. Experimental results are provided to validate the study.","PeriodicalId":45291,"journal":{"name":"International Journal of Intelligent Computing and Cybernetics","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Computing and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6025/jic/2018/9/4/144-156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Pattern with time period is more valuable because it can better describe objective knowledge. Previous studies on periodic patterns from market basket data focus on patterns without considering the items with their purchased quantities. But in real-life transactions, an item could be purchased multiple times in a transaction and different items may have different quantity in the transactions. To solve this problem, we incorporate the concept of transaction frequency (TF) and database frequency (DF) of an item in a time interval. Our algorithm works in two phases. In first phase we mined locally frequent item sets along with the set of intervals and their database frequency range and second phase mines the two types of periodic patterns (cyclic and acyclic) from the list of intervals. Experimental results are provided to validate the study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从非二进制事务中挖掘周期模式
带时间段的模式更有价值,因为它能更好地描述客观知识。以往对市场篮子数据周期模式的研究主要集中在模式上,而没有考虑商品的购买数量。但在现实交易中,一件商品可能在一次交易中被购买多次,不同的商品在交易中可能有不同的数量。为了解决这个问题,我们结合了一个项目在一个时间间隔内的事务频率(TF)和数据库频率(DF)的概念。我们的算法分为两个阶段。在第一阶段,我们挖掘本地频繁的项目集以及一组间隔和它们的数据库频率范围,第二阶段从间隔列表中挖掘两种类型的周期模式(循环和非循环)。实验结果验证了本文的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
4.70%
发文量
26
期刊最新文献
Six classes named entity recognition for mapping location of Indonesia natural disasters from twitter data Evaluation of predicted fault tolerance based on C5.0 decision tree algorithm in irrigation system of paddy fields Manifold embedded global and local discriminative features selection for single-shot multi-categories clothing recognition and retrieval Exploring the differentiated elderly service subsidies considering consumer word-of-mouth preferences TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1