Finding Dangerous Waves – Towards an Efficient Method to Obtain Wave Impact Design Loads for Marine Structures

S. V. van Essen, H. Seyffert
{"title":"Finding Dangerous Waves – Towards an Efficient Method to Obtain Wave Impact Design Loads for Marine Structures","authors":"S. V. van Essen, H. Seyffert","doi":"10.1115/omae2022-79479","DOIUrl":null,"url":null,"abstract":"\n Green water and slamming wave impacts can lead to severe damage or operability issues for marine structures. It is therefore essential to consider their probability and loads in design. This is difficult, as impacts are both hydrodynamically complex and relatively rare. The complexity requires high-fidelity modelling (experiments or CFD), whereas a statistically sound analysis of rare events requires long durations. High-fidelity tools are too demanding to run a Monte-Carlo simulation; low-fidelity tools do not include sufficient physical details. The use of extreme value theory and / or multi-fidelity modelling is therefore required. The present paper reviews the state-of-the-art methods to find wave impact design loads, which include response-conditioning methods, screening methods and adaptive sampling methods. Their benefits and shortcomings are discussed, as well as challenges for the wave impact problem. One challenge is the role of wave non-linearity. Another is the validation of the different methods; it is hard to obtain long-duration high-fidelity wave impact data. A planned case study is introduced, where different techniques will be put to the test and these challenges will be addressed.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2022-79479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Green water and slamming wave impacts can lead to severe damage or operability issues for marine structures. It is therefore essential to consider their probability and loads in design. This is difficult, as impacts are both hydrodynamically complex and relatively rare. The complexity requires high-fidelity modelling (experiments or CFD), whereas a statistically sound analysis of rare events requires long durations. High-fidelity tools are too demanding to run a Monte-Carlo simulation; low-fidelity tools do not include sufficient physical details. The use of extreme value theory and / or multi-fidelity modelling is therefore required. The present paper reviews the state-of-the-art methods to find wave impact design loads, which include response-conditioning methods, screening methods and adaptive sampling methods. Their benefits and shortcomings are discussed, as well as challenges for the wave impact problem. One challenge is the role of wave non-linearity. Another is the validation of the different methods; it is hard to obtain long-duration high-fidelity wave impact data. A planned case study is introduced, where different techniques will be put to the test and these challenges will be addressed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寻找危险波浪——迈向一种获取海洋结构波浪冲击设计载荷的有效方法
绿水和巨浪的冲击会导致海洋结构的严重损坏或操作性问题。因此,在设计时必须考虑它们的概率和载荷。这很困难,因为撞击在流体动力学上既复杂又相对罕见。这种复杂性需要高保真度的建模(实验或CFD),而对罕见事件进行可靠的统计分析则需要较长的持续时间。高保真工具对于运行蒙特卡罗模拟要求太高;低保真工具不包括足够的物理细节。因此,需要使用极值理论和/或多保真度建模。本文综述了波浪冲击设计载荷的最新研究方法,包括响应调节法、筛选法和自适应采样法。讨论了它们的优点和缺点,以及波浪冲击问题面临的挑战。其中一个挑战是波浪非线性的作用。另一个是不同方法的验证;长时间高保真的波浪冲击数据很难获得。介绍了一个计划好的案例研究,其中将对不同的技术进行测试,并解决这些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Importance of the Inertial Components in Modal State Covariances Prelude FLNG Free Weathervaning Heading Prediction and Uncertainties, Based on Machine Learning Model Applying Open Web Architectures Towards Collaborative Maritime Design and Simulation Joint-Industry Effort to Develop and Verify CFD Modeling Practice for Predicting Wave Impact Dynamic Response of a Generic Self-Elevating Unit in Operation With Hull in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1