{"title":"Advances in nanoparticle-based drug delivery in cancer treatment","authors":"Pourya Sarvari, P. Sarvari","doi":"10.36922/gtm.0394","DOIUrl":null,"url":null,"abstract":"As a pathologically heterogeneous disease, cancer is one of the leading causes of global morbidity. According to the World Health Organization, approximately one in six deaths are caused by cancer. Fortunately, many cancers can be cured if diagnosed at early stages and treated efficiently. Despite the benefits of conventional cancer treatments such as surgery, chemotherapy, hormone therapy, and radiation therapy, they have several drawbacks, including cytotoxicity, inaccurate targeting of tumor cells, and multi-drug resistance, which underscore the importance of developing novel and effective strategies to improve diagnosis, prognosis, therapy, and patient survival. Recently, the advancement of nanotechnology has opened new horizons for cancer treatment thanks to the discovery of nanoparticles (NPs) and the small-sized molecules that revolutionized the drug delivery methods in cancerous tissues. The specific characteristics of NPs, such as reduced toxicity, improved permeability, and accurate targeting of tumor cells, provide a great advantage in cancer treatment and help to overcome the limitations and challenges of conventional cancer treatment methods. Besides, the role of NPs in immunotherapy has created a novel concept for cancer treatment. This review gives a brief overview regarding the importance of NPs and their targeting mechanism, as well as the challenges and limitations associated with their use in cancer treatment.","PeriodicalId":73176,"journal":{"name":"Global translational medicine","volume":"120 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global translational medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36922/gtm.0394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
As a pathologically heterogeneous disease, cancer is one of the leading causes of global morbidity. According to the World Health Organization, approximately one in six deaths are caused by cancer. Fortunately, many cancers can be cured if diagnosed at early stages and treated efficiently. Despite the benefits of conventional cancer treatments such as surgery, chemotherapy, hormone therapy, and radiation therapy, they have several drawbacks, including cytotoxicity, inaccurate targeting of tumor cells, and multi-drug resistance, which underscore the importance of developing novel and effective strategies to improve diagnosis, prognosis, therapy, and patient survival. Recently, the advancement of nanotechnology has opened new horizons for cancer treatment thanks to the discovery of nanoparticles (NPs) and the small-sized molecules that revolutionized the drug delivery methods in cancerous tissues. The specific characteristics of NPs, such as reduced toxicity, improved permeability, and accurate targeting of tumor cells, provide a great advantage in cancer treatment and help to overcome the limitations and challenges of conventional cancer treatment methods. Besides, the role of NPs in immunotherapy has created a novel concept for cancer treatment. This review gives a brief overview regarding the importance of NPs and their targeting mechanism, as well as the challenges and limitations associated with their use in cancer treatment.