Through-Building Ducts for Mounting Wind Turbines: A Numerical Study

Hadi Mirian, M. Anbarsooz, Abbas Hoshyar, A. Arabgolarcheh
{"title":"Through-Building Ducts for Mounting Wind Turbines: A Numerical Study","authors":"Hadi Mirian, M. Anbarsooz, Abbas Hoshyar, A. Arabgolarcheh","doi":"10.1115/power2021-64181","DOIUrl":null,"url":null,"abstract":"\n Yet, several locations for mounting the wind turbines in urban areas have been proposed, which can be categorized into four main groups; (a) on the rooftops, (b) between the buildings, (c) integrated into the buildings’ skin and (d) inside a though-building hole. Through-building holes take advantage of the pressure difference between the windward and leeward facades of the building to generate a high-speed velocity zone for mounting the wind turbine. In the current study, three-dimensional numerical simulations of atmospheric turbulent boundary layer flow around high-rise buildings are carried out to determine the optimum location and size of the duct. For this purpose, square cross-section buildings (20 × 20 m) with heights of H0 = 60, 120 and 180 m are considered. Numerical results showed that the difference of the pressure coefficient on the windward and leeward facades of the building without the hole can predict the best location for mounting the wind turbine with acceptable accuracy. Then, circular holes with various diameters of D = 2.5, 5.0, 7.5, 10 and 12.5m are created at z/H0 = 0.8, where the maximum pressure difference is close to the maximum. It is found that the maximum velocity increment occurs for D = 10 m and it is 31% greater than the U10 velocity of the incident wind profile. This means that the available wind power inside the duct is 2.25 times greater than the incident wind power.","PeriodicalId":8567,"journal":{"name":"ASME 2021 Power Conference","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2021 Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/power2021-64181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Yet, several locations for mounting the wind turbines in urban areas have been proposed, which can be categorized into four main groups; (a) on the rooftops, (b) between the buildings, (c) integrated into the buildings’ skin and (d) inside a though-building hole. Through-building holes take advantage of the pressure difference between the windward and leeward facades of the building to generate a high-speed velocity zone for mounting the wind turbine. In the current study, three-dimensional numerical simulations of atmospheric turbulent boundary layer flow around high-rise buildings are carried out to determine the optimum location and size of the duct. For this purpose, square cross-section buildings (20 × 20 m) with heights of H0 = 60, 120 and 180 m are considered. Numerical results showed that the difference of the pressure coefficient on the windward and leeward facades of the building without the hole can predict the best location for mounting the wind turbine with acceptable accuracy. Then, circular holes with various diameters of D = 2.5, 5.0, 7.5, 10 and 12.5m are created at z/H0 = 0.8, where the maximum pressure difference is close to the maximum. It is found that the maximum velocity increment occurs for D = 10 m and it is 31% greater than the U10 velocity of the incident wind profile. This means that the available wind power inside the duct is 2.25 times greater than the incident wind power.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于安装风力涡轮机的建筑通风管:数值研究
然而,已经提出了在城市地区安装风力涡轮机的几个地点,可分为四大类;(a)在屋顶上,(b)在建筑物之间,(c)集成到建筑物的表皮和(d)在一个贯穿建筑的洞内。贯穿建筑的孔洞利用建筑迎风面和背风面之间的压力差来产生一个安装风力涡轮机的高速速度区。本研究对高层建筑周围大气湍流边界层流动进行了三维数值模拟,以确定风管的最佳位置和尺寸。为此,考虑高度为H0 = 60、120和180 m的方形截面建筑(20 × 20 m)。数值计算结果表明,无孔建筑的迎风面和背风面压力系数的差值可以预测风力机的最佳安装位置,精度可接受。然后在z/H0 = 0.8处形成不同直径D = 2.5、5.0、7.5、10和12.5m的圆孔,此时最大压差接近最大值。结果表明,风速增量在D = 10 m处最大,比入射风廓线的U10速度大31%。这意味着管道内的可用风力是入射风力的2.25倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Inverse Method for Parameter Retrieval in Solar Thermal Collector With a Single Glass Cover Experimental Evaluation of Dewar Volume and Cryocooler Cold Finger Size in a Small-Scale Stirling Liquid Air Energy Storage (LAES) System Design Considerations of Solar-Driven Hydrogen Production Plants for Residential Applications Combined Cycle Gas Turbines With Electrically-Heated Thermal Energy Storage for Dispatchable Zero-Carbon Electricity Investigation of the Performance of Air-Steam Combined Cycle for Electric Power Plants Using Low Grade Solid Fuels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1