Multiview Photometric Stereo Using Planar Mesh Parameterization

Jaesik Park, Sudipta N. Sinha, Y. Matsushita, Yu-Wing Tai, In-So Kweon
{"title":"Multiview Photometric Stereo Using Planar Mesh Parameterization","authors":"Jaesik Park, Sudipta N. Sinha, Y. Matsushita, Yu-Wing Tai, In-So Kweon","doi":"10.1109/ICCV.2013.148","DOIUrl":null,"url":null,"abstract":"We propose a method for accurate 3D shape reconstruction using uncalibrated multiview photometric stereo. A coarse mesh reconstructed using multiview stereo is first parameterized using a planar mesh parameterization technique. Subsequently, multiview photometric stereo is performed in the 2D parameter domain of the mesh, where all geometric and photometric cues from multiple images can be treated uniformly. Unlike traditional methods, there is no need for merging view-dependent surface normal maps. Our key contribution is a new photometric stereo based mesh refinement technique that can efficiently reconstruct meshes with extremely fine geometric details by directly estimating a displacement texture map in the 2D parameter domain. We demonstrate that intricate surface geometry can be reconstructed using several challenging datasets containing surfaces with specular reflections, multiple albedos and complex topologies.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"28 1","pages":"1161-1168"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

We propose a method for accurate 3D shape reconstruction using uncalibrated multiview photometric stereo. A coarse mesh reconstructed using multiview stereo is first parameterized using a planar mesh parameterization technique. Subsequently, multiview photometric stereo is performed in the 2D parameter domain of the mesh, where all geometric and photometric cues from multiple images can be treated uniformly. Unlike traditional methods, there is no need for merging view-dependent surface normal maps. Our key contribution is a new photometric stereo based mesh refinement technique that can efficiently reconstruct meshes with extremely fine geometric details by directly estimating a displacement texture map in the 2D parameter domain. We demonstrate that intricate surface geometry can be reconstructed using several challenging datasets containing surfaces with specular reflections, multiple albedos and complex topologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于平面网格参数化的多视点测光立体
我们提出了一种使用未校准的多视点光度立体图像进行精确三维形状重建的方法。首先利用平面网格参数化技术对多视立体重建的粗网格进行参数化。随后,在网格的二维参数域中执行多视图光度立体,其中来自多幅图像的所有几何和光度线索可以统一处理。与传统方法不同,该方法不需要合并依赖于视图的表面法线贴图。我们的主要贡献是一种新的基于光度立体的网格细化技术,该技术可以通过直接估计二维参数域中的位移纹理映射,有效地重建具有极精细几何细节的网格。我们证明了复杂的表面几何结构可以使用几个具有挑战性的数据集来重建,这些数据集包含具有镜面反射、多重反照率和复杂拓扑结构的表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects A General Dense Image Matching Framework Combining Direct and Feature-Based Costs Latent Space Sparse Subspace Clustering Non-convex P-Norm Projection for Robust Sparsity Hierarchical Joint Max-Margin Learning of Mid and Top Level Representations for Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1