{"title":"Production Logging Using Quantum Dots Tracers®","authors":"Alexey Anopov, K. Ovchinnikov, A. Katashov","doi":"10.2118/195048-MS","DOIUrl":null,"url":null,"abstract":"\n Conventional production logging tools proved to be efficient in vertical wells. When it comes to work in horizontal laterals production logging becomes much more complex. Common challenges are layered flow of reservoir fluid, deviation, wellbore accessibility, and stagnant zones along lateral. The tracer technology features a synthesis of a combination of marker-reporters made of a few quantum dots and a mixture of the polymer-based chemical composition. Quantum dots are nanocrystals produced using the process called colloidal synthesis. A single quantum dot is compounded of few hundred atoms and as small as 2-10 nanometer in diameter. Colloidal quantum dots irradiated with a laser emit light of different colors due to quantum confinement. The emittance of a particular specter of light can be detected using flow cytometry method. Several quantum dots joined together creates a unique and traceable marker-reporters element. There could be many unique tracer signatures (over 60). Utilization of quantum dots exclude any chance of misinterpretation while identifying tracers in samples of formation fluid. To achive superior accuracy in tracer identification we use software based on \"machine learning\". Qualitative and quantitative analysis of quantum dot marker-reporters in samples of formation fluid allows making informed conclusions about the performance of productive intervals of a horizontal well. Application of the technology showed the following benefits: the possibility of monitoring inflows for a long time, in contrast to a one-time logging operation; a significantly lower resource intensity and cost; confidence in conditions when the traditional downhole logging operations are complicated. Quantum dot tracer technology allows solving a number of problems, such as: post-fracturing inflow profile evaluation extended in time; assessment of each production interval in regard to water and oil production; optimization of technical solutions for well completions in the early stages of field development, such as number of ports; analysis of hydrocarbons extraction ratio; detailed information in the analysis of mutual influence of neighbouring wells in the oilfield. The application of the technology is particularly effective in the early diagnosis of water breakthrough, which allows enough time to choose the right technology for water shut off operation. Ultimately, this fact reflects in declining production rates and increasing incurred costs Major benefit is an ability to monitor production per zone at any time during five (5) years after deploying tracer-containing material downhole. Implementation of the technology is time efficient and does not require field equipment as well as crew for operation, which reflects on operating costs carried by customers.","PeriodicalId":11031,"journal":{"name":"Day 4 Thu, March 21, 2019","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, March 21, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/195048-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Conventional production logging tools proved to be efficient in vertical wells. When it comes to work in horizontal laterals production logging becomes much more complex. Common challenges are layered flow of reservoir fluid, deviation, wellbore accessibility, and stagnant zones along lateral. The tracer technology features a synthesis of a combination of marker-reporters made of a few quantum dots and a mixture of the polymer-based chemical composition. Quantum dots are nanocrystals produced using the process called colloidal synthesis. A single quantum dot is compounded of few hundred atoms and as small as 2-10 nanometer in diameter. Colloidal quantum dots irradiated with a laser emit light of different colors due to quantum confinement. The emittance of a particular specter of light can be detected using flow cytometry method. Several quantum dots joined together creates a unique and traceable marker-reporters element. There could be many unique tracer signatures (over 60). Utilization of quantum dots exclude any chance of misinterpretation while identifying tracers in samples of formation fluid. To achive superior accuracy in tracer identification we use software based on "machine learning". Qualitative and quantitative analysis of quantum dot marker-reporters in samples of formation fluid allows making informed conclusions about the performance of productive intervals of a horizontal well. Application of the technology showed the following benefits: the possibility of monitoring inflows for a long time, in contrast to a one-time logging operation; a significantly lower resource intensity and cost; confidence in conditions when the traditional downhole logging operations are complicated. Quantum dot tracer technology allows solving a number of problems, such as: post-fracturing inflow profile evaluation extended in time; assessment of each production interval in regard to water and oil production; optimization of technical solutions for well completions in the early stages of field development, such as number of ports; analysis of hydrocarbons extraction ratio; detailed information in the analysis of mutual influence of neighbouring wells in the oilfield. The application of the technology is particularly effective in the early diagnosis of water breakthrough, which allows enough time to choose the right technology for water shut off operation. Ultimately, this fact reflects in declining production rates and increasing incurred costs Major benefit is an ability to monitor production per zone at any time during five (5) years after deploying tracer-containing material downhole. Implementation of the technology is time efficient and does not require field equipment as well as crew for operation, which reflects on operating costs carried by customers.