{"title":"Analysis of Antenatal Care Visit Data in Bangladesh Using Zero Modified Count Regression Model","authors":"N. Ahmed, T. S. Mallick","doi":"10.3329/dujs.v67i2.54583","DOIUrl":null,"url":null,"abstract":"In medical science, pharmaceutical studies, public health and socio-economic researches we often encounter the situation of excess of zeros in count data. This preponderance of zeros leads to overdispersion. In such cases traditional count data regression models like Poisson and negative binomial (NB) regression may not be pertinent for inference. The two most commonly used types of model that have been developed to adjust for excessivezeros in count data are Hurdle and zero-inflated models. In this study we have analyzed the antenatal care (ANC) visit data of pregnant women in Bangladesh using traditional and zero-modified count models. Based on the model selection criteria, we found that negative binomial hurdle model fits the data best. Through this analysis,we have perceived that the variables age of mother, division, birth order (order a child is born), place of residence, economic condition, media exposure of the mother, mainaccess road to village and education gap between husband and wife have significant impact on the mean number of ANC visits taken. Dhaka Univ. J. Sci. 67(2): 117-122, 2019 (July)","PeriodicalId":11280,"journal":{"name":"Dhaka University Journal of Science","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dhaka University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/dujs.v67i2.54583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In medical science, pharmaceutical studies, public health and socio-economic researches we often encounter the situation of excess of zeros in count data. This preponderance of zeros leads to overdispersion. In such cases traditional count data regression models like Poisson and negative binomial (NB) regression may not be pertinent for inference. The two most commonly used types of model that have been developed to adjust for excessivezeros in count data are Hurdle and zero-inflated models. In this study we have analyzed the antenatal care (ANC) visit data of pregnant women in Bangladesh using traditional and zero-modified count models. Based on the model selection criteria, we found that negative binomial hurdle model fits the data best. Through this analysis,we have perceived that the variables age of mother, division, birth order (order a child is born), place of residence, economic condition, media exposure of the mother, mainaccess road to village and education gap between husband and wife have significant impact on the mean number of ANC visits taken. Dhaka Univ. J. Sci. 67(2): 117-122, 2019 (July)