Design and development of machine learning based resume ranking system

Tejaswini K , Umadevi V , Shashank M Kadiwal , Sanjay Revanna
{"title":"Design and development of machine learning based resume ranking system","authors":"Tejaswini K ,&nbsp;Umadevi V ,&nbsp;Shashank M Kadiwal ,&nbsp;Sanjay Revanna","doi":"10.1016/j.gltp.2021.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>Finding acceptable applicants for a vacant job might be a difficult process, especially when there are many prospects. The manual process of screening resumes could stymie the team's efforts to locate the right individual at the right moment. The laborious screening may be greatly aided by an automated technique for screening and ranking applicants. In our work, the top applicants might be rated using content-based suggestion, which uses cosine similarity to find the curriculum vitae that are the most comparable to the job description supplied and KNN algorithm is used to pick and rank Curriculum Vitaes (CV) based on job descriptions in huge quantities. Experimental results indicate the performance of the proposed system as an average text parsing accuracy of 85% and a ranking accuracy of 92%.</p></div>","PeriodicalId":100588,"journal":{"name":"Global Transitions Proceedings","volume":"3 2","pages":"Pages 371-375"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666285X21001011/pdfft?md5=278d731e46c28d0f1c87510c36fb1467&pid=1-s2.0-S2666285X21001011-main.pdf","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Transitions Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666285X21001011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Finding acceptable applicants for a vacant job might be a difficult process, especially when there are many prospects. The manual process of screening resumes could stymie the team's efforts to locate the right individual at the right moment. The laborious screening may be greatly aided by an automated technique for screening and ranking applicants. In our work, the top applicants might be rated using content-based suggestion, which uses cosine similarity to find the curriculum vitae that are the most comparable to the job description supplied and KNN algorithm is used to pick and rank Curriculum Vitaes (CV) based on job descriptions in huge quantities. Experimental results indicate the performance of the proposed system as an average text parsing accuracy of 85% and a ranking accuracy of 92%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的简历排名系统的设计与开发
为空缺职位找到合适的求职者可能是一个困难的过程,尤其是当有很多候选人的时候。手动筛选简历的过程可能会阻碍团队在合适的时间找到合适的人选。这种费力的筛选可以通过筛选和排序申请人的自动化技术得到极大的帮助。在我们的工作中,可能会使用基于内容的建议对排名靠前的申请人进行评级,该建议使用余弦相似性来找到与所提供的职位描述最具可比性的简历,并使用KNN算法根据大量的职位描述来挑选和排名简历(CV)。实验结果表明,该系统的平均文本解析准确率为85%,排序准确率为92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Energy Efficient Secure Routing Protocol for Mobile Ad-Hoc Network Grid interconnected H-bridge multilevel inverter for renewable power applications using repeating units and level boosting network Power Generation Using Ocean Waves: A Review Development of an Arabic HQAS-based ASAG to consider an ignored knowledge in misspelled multiple words short answers Smartphone assist deep neural network to detect the citrus diseases in Agri-informatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1