{"title":"Experimental and finite element analysis of PPF controller effectiveness in composite beam vibration suppression","authors":"A. Mitura, Jarosław Gawryluk","doi":"10.17531/ein.2022.3.8","DOIUrl":null,"url":null,"abstract":"In this paper the problem of vibration reduction is considered. Generally, mechanical vibrations occurring during the operation of a system are undesirable and may have a negative effect on its reliability. A finite element model of a single active blade is developed using the Abaqus software. This structure consists of a multi-layer glass-epoxy composite beam with an embedded macro fiber composite (MFC) piezoelectric actuator. For vibration control the use of a positive position feedback (PPF) controller is proposed. To include the PPF controller in the Abaqus software, a special subroutine is created. The developed control algorithm code makes it possible to solve an additional differential equation by the fourth order RungeKutta method. A numerical dynamic analysis is performed by the implicit procedure. The beam responses with and without controller activation are compared. The control subsystem model also includes the hysteresis phenomenon of the piezoelectric actuator. Numerical findings regarding the PPF controller’s effectiveness are verified experimentally.","PeriodicalId":50549,"journal":{"name":"Eksploatacja I Niezawodnosc-Maintenance and Reliability","volume":"9 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja I Niezawodnosc-Maintenance and Reliability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17531/ein.2022.3.8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper the problem of vibration reduction is considered. Generally, mechanical vibrations occurring during the operation of a system are undesirable and may have a negative effect on its reliability. A finite element model of a single active blade is developed using the Abaqus software. This structure consists of a multi-layer glass-epoxy composite beam with an embedded macro fiber composite (MFC) piezoelectric actuator. For vibration control the use of a positive position feedback (PPF) controller is proposed. To include the PPF controller in the Abaqus software, a special subroutine is created. The developed control algorithm code makes it possible to solve an additional differential equation by the fourth order RungeKutta method. A numerical dynamic analysis is performed by the implicit procedure. The beam responses with and without controller activation are compared. The control subsystem model also includes the hysteresis phenomenon of the piezoelectric actuator. Numerical findings regarding the PPF controller’s effectiveness are verified experimentally.
期刊介绍:
The quarterly Eksploatacja i Niezawodność – Maintenance and Reliability publishes articles containing original results of experimental research on the durabilty and reliability of technical objects. We also accept papers presenting theoretical analyses supported by physical interpretation of causes or ones that have been verified empirically. Eksploatacja i Niezawodność – Maintenance and Reliability also publishes articles on innovative modeling approaches and research methods regarding the durability and reliability of objects.