{"title":"A Comprehensive Theoretical Study of Drug Delivery at Nanoscale","authors":"Rq Sofi, S. Majeed, A. Sofi","doi":"10.15406/JNMR.2017.05.00106","DOIUrl":null,"url":null,"abstract":"Nanotechnology, an interdisciplinary science that incorporates physics, chemistry, biology, etc. involves creation and utilization of materials, devices or systems on the nanometer scale and is currently undergoing unexpected development on many fronts. It finds numerous applications in material strengthening and fabrication, healthcare, agriculture, processing and storage of foods, robotics for human welfare, energy conservation and utilization, transport, manufacturing of safe and quality products and security at global level [1-11]. Besides, these unparalleled applications it has incredible potential for revolutionizing all fields of technology and is expected to create innovations and play a vital role in various biomedical applications like, drug delivery systems, molecular imaging, biomarkers, therapeutics, diagnostics, cancer therapy, biosensors, etc. Synthesis via benign route and building of orderly drug delivery systems are very important for medical and health-care. In this field, nano-based drug delivery system specifically nanoparticles have developed a great modification that provides new opportunities to move over hindrances and flaws of conventional drug delivery methods like enhance solubility of drugs, diminish drug toxicity, beshields drugs from deterioration, ineffective and benign delivery of drugs to specific target sites in the body, etc. [12-15].","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomedicine Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/JNMR.2017.05.00106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nanotechnology, an interdisciplinary science that incorporates physics, chemistry, biology, etc. involves creation and utilization of materials, devices or systems on the nanometer scale and is currently undergoing unexpected development on many fronts. It finds numerous applications in material strengthening and fabrication, healthcare, agriculture, processing and storage of foods, robotics for human welfare, energy conservation and utilization, transport, manufacturing of safe and quality products and security at global level [1-11]. Besides, these unparalleled applications it has incredible potential for revolutionizing all fields of technology and is expected to create innovations and play a vital role in various biomedical applications like, drug delivery systems, molecular imaging, biomarkers, therapeutics, diagnostics, cancer therapy, biosensors, etc. Synthesis via benign route and building of orderly drug delivery systems are very important for medical and health-care. In this field, nano-based drug delivery system specifically nanoparticles have developed a great modification that provides new opportunities to move over hindrances and flaws of conventional drug delivery methods like enhance solubility of drugs, diminish drug toxicity, beshields drugs from deterioration, ineffective and benign delivery of drugs to specific target sites in the body, etc. [12-15].