Approach for C1 to C2 products commencing from carbon dioxide: A brief review

IF 4.2 Q2 ENERGY & FUELS Petroleum Pub Date : 2023-07-19 DOI:10.1016/j.petlm.2023.07.002
{"title":"Approach for C1 to C2 products commencing from carbon dioxide: A brief review","authors":"","doi":"10.1016/j.petlm.2023.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>The carbon dioxide (CO<sub>2</sub>) conversion to useable compounds remains a great contest to scientists, engineers, and environmentalists with regard to the reverse of the oxidative degradation of organics. This conversion is essential for the development of complementary fuels and raw materials for various industries, which in turn will help in avoiding the drastic increase in tropospheric temperature due to greenhouse effect leading to global warming. The solar energy is the earth's essential power source along with the other various forms of energy for example fossil fuels, hydropower, wind, and biomaterials, etc. The final goal is to establish the artificial photosynthesis, which can be replicated thru various chemical reduction techniques of CO<sub>2</sub> by employing appropriate photo-, thermal- and electro-catalysts in order to produce different one carbon atom (C<sub>1</sub>) and higher carbon atoms containing products. Besides, the utilization of clean and sustainable CO<sub>2</sub> towards high-value products is of great interest today due to the recognized environmental worries and subsequent lessening of the fossil fuels utilization load to meet the energy demand of mankind. This way, solar energy can directly and/or indirectly be altered and stored in chemical energy form for industrial as well as societal applications. In this article our endeavor is to summarize the advances in CO<sub>2</sub> chemical reduction research area till date especially in free radical-based methods such as electrochemical, photochemical and plasma chemical for the development of carbon species up to two carbon (C<sub>2</sub>) atoms containing products perceived in the chemical reduction of CO<sub>2</sub>. The author hopes that this piece of work will be helpful to researchers and readers who are focused on the field of CO<sub>2</sub>.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 3","pages":"Pages 373-398"},"PeriodicalIF":4.2000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000500/pdfft?md5=d6b50841be8e3b6ee6ce68de9365935e&pid=1-s2.0-S2405656123000500-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656123000500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The carbon dioxide (CO2) conversion to useable compounds remains a great contest to scientists, engineers, and environmentalists with regard to the reverse of the oxidative degradation of organics. This conversion is essential for the development of complementary fuels and raw materials for various industries, which in turn will help in avoiding the drastic increase in tropospheric temperature due to greenhouse effect leading to global warming. The solar energy is the earth's essential power source along with the other various forms of energy for example fossil fuels, hydropower, wind, and biomaterials, etc. The final goal is to establish the artificial photosynthesis, which can be replicated thru various chemical reduction techniques of CO2 by employing appropriate photo-, thermal- and electro-catalysts in order to produce different one carbon atom (C1) and higher carbon atoms containing products. Besides, the utilization of clean and sustainable CO2 towards high-value products is of great interest today due to the recognized environmental worries and subsequent lessening of the fossil fuels utilization load to meet the energy demand of mankind. This way, solar energy can directly and/or indirectly be altered and stored in chemical energy form for industrial as well as societal applications. In this article our endeavor is to summarize the advances in CO2 chemical reduction research area till date especially in free radical-based methods such as electrochemical, photochemical and plasma chemical for the development of carbon species up to two carbon (C2) atoms containing products perceived in the chemical reduction of CO2. The author hopes that this piece of work will be helpful to researchers and readers who are focused on the field of CO2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从二氧化碳开始生产 C1 到 C2 产品的方法:简要回顾
如何将二氧化碳(CO2)转化为可利用的化合物,仍然是科学家、工程师和环境学家在有机物氧化降解逆转方面的一项重大挑战。这种转化对于开发补充燃料和各种工业原料至关重要,而这反过来又有助于避免因温室效应导致对流层温度急剧上升,从而导致全球变暖。太阳能与其他各种形式的能源,如化石燃料、水电、风能和生物材料等,都是地球的基本动力源。最终目标是建立人工光合作用,利用适当的光催化剂、热催化剂和电催化剂,通过各种二氧化碳化学还原技术复制人工光合作用,以生产不同的单碳原子(C1)和含更多碳原子的产品。此外,由于人们对环境的担忧以及为满足人类的能源需求而减少化石燃料的使用量,利用清洁和可持续的二氧化碳生产高价值产品已成为当今人们非常关注的问题。这样,太阳能就可以直接和/或间接地改变并以化学能的形式储存起来,用于工业和社会应用。本文旨在总结迄今为止二氧化碳化学还原研究领域的进展,特别是基于自由基的方法,如电化学、光化学和等离子体化学,用于开发二氧化碳化学还原过程中可感知的含两个碳原子(C2)的碳物种。作者希望这篇论文能对关注二氧化碳领域的研究人员和读者有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Petroleum
Petroleum Earth and Planetary Sciences-Geology
CiteScore
9.20
自引率
0.00%
发文量
76
审稿时长
124 days
期刊介绍: Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing
期刊最新文献
Effect of alumina and silica nanocomposite based on polyacrylamide on light and heavy oil recovery in presence of formation water using micromodel Volumetric and viscometric properties of aqueous 1,2-dimethylethylenediamine solution for carbon capture application Iso-propyl caprylate and iso-propyl linolenate synthetic fluids as novel alternatives in deep-water drilling operations: Critical fluid properties and aerobic biodegradability assessments Leakage and diffusion characteristics of underground hydrogen pipeline Investigation of the transformation of organic matter of carbonate deposits of the Semiluksky–Mendymsky horizon under hydrothermal conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1