{"title":"USLE/RUSLE K-factors allocated through a linear mixed model for Uruguayan soils","authors":"A. Beretta-Blanco, L. Carrasco-Letelier","doi":"10.7764/RCIA.V44I1.1622","DOIUrl":null,"url":null,"abstract":"Soil erosion by rainfall is a process that demands management, both for the prevention of excessive soil erosion and for the protection of the quality of freshwater bodies. Erosion coefficients (K-factors) of the universal soil loss equation (USLE)/revised USLE (RUSLE) model were assigned to 99 mapped Uruguayan soil types at 1:1,000,000 scale. This work developed a linear mixed model (LMM) with 79 soils with assigned K-factors, in which the following variables were considered: soil taxonomy, chemical composition, and parent material. The developed LMM had an R2=0.86, in which the soil taxonomy (p<0.0001), parent material (p=0.0174), clay (p=0.0005) and sand (p=0.017) contents had significant statistical effects. The prediction capacity of this model was assessed with 10 soils not previously used in development of the LMM with assigned K-factors. The prediction assessment had an R2=0.84 and a mean error of 9.08% of the mean K-factor value. The LMM developed was used for the allocation of K-factors to soils mapped at a 1:20,000-resolution. Thus, the use of LMM increased the soil area with assigned K-factors from 111,822 km2 (at a scale of 1:1,000,000) to 174,132 km2 (1:20,000).","PeriodicalId":50695,"journal":{"name":"Ciencia E Investigacion Agraria","volume":"10 1","pages":"100-112"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencia E Investigacion Agraria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7764/RCIA.V44I1.1622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 9
Abstract
Soil erosion by rainfall is a process that demands management, both for the prevention of excessive soil erosion and for the protection of the quality of freshwater bodies. Erosion coefficients (K-factors) of the universal soil loss equation (USLE)/revised USLE (RUSLE) model were assigned to 99 mapped Uruguayan soil types at 1:1,000,000 scale. This work developed a linear mixed model (LMM) with 79 soils with assigned K-factors, in which the following variables were considered: soil taxonomy, chemical composition, and parent material. The developed LMM had an R2=0.86, in which the soil taxonomy (p<0.0001), parent material (p=0.0174), clay (p=0.0005) and sand (p=0.017) contents had significant statistical effects. The prediction capacity of this model was assessed with 10 soils not previously used in development of the LMM with assigned K-factors. The prediction assessment had an R2=0.84 and a mean error of 9.08% of the mean K-factor value. The LMM developed was used for the allocation of K-factors to soils mapped at a 1:20,000-resolution. Thus, the use of LMM increased the soil area with assigned K-factors from 111,822 km2 (at a scale of 1:1,000,000) to 174,132 km2 (1:20,000).
期刊介绍:
The subject matter that is considered to be appropriate for publication in International Journal of Agriculture and Natural Resources (formerly Ciencia e Investigación Agraria) is all new scientific and technological research in agriculture, animal production, forestry, natural resources and other related fields.