{"title":"Realisation of large-scale photonic spiking hardware system","authors":"Ria Talukder, X. Porte, D. Brunner","doi":"10.1117/12.2633530","DOIUrl":null,"url":null,"abstract":"An efficient photonic hardware integration of neural networks can benefit us from the inherent properties of parallelism, high-speed data processing and potentially low energy consumption. In artificial neural networks (ANN), neurons are classified as static, single and continuous-valued. On contrary, information transmission and computation in biological neurons occur through spikes, where spike time and rate play a significant role. Spiking neural networks (SNNs) are thereby more biologically relevant along with additional benefits in terms of hardware friendliness and energy-efficiency. Considering all these advantages, we designed a photonic reservoir computer (RC) based on photonic recurrent spiking neural networks (SNN) i.e. a liquid state machine. It is a scalable proof-of-concept experiment, comprising more than 30,000 neurons. This system presents an excellent testbed for demonstrating next generation bio-inspired learning in photonic systems.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"106 1","pages":"122040A - 122040A-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2633530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An efficient photonic hardware integration of neural networks can benefit us from the inherent properties of parallelism, high-speed data processing and potentially low energy consumption. In artificial neural networks (ANN), neurons are classified as static, single and continuous-valued. On contrary, information transmission and computation in biological neurons occur through spikes, where spike time and rate play a significant role. Spiking neural networks (SNNs) are thereby more biologically relevant along with additional benefits in terms of hardware friendliness and energy-efficiency. Considering all these advantages, we designed a photonic reservoir computer (RC) based on photonic recurrent spiking neural networks (SNN) i.e. a liquid state machine. It is a scalable proof-of-concept experiment, comprising more than 30,000 neurons. This system presents an excellent testbed for demonstrating next generation bio-inspired learning in photonic systems.