Investigation of LVRT capability of wind driven dual excited synchronous generator

IF 1.5 Q4 ENERGY & FUELS Wind Engineering Pub Date : 2022-10-31 DOI:10.1177/0309524X221130718
H. M. Yassin, Ramadan Ragab Abdel Wahab, H. H. Hanafy
{"title":"Investigation of LVRT capability of wind driven dual excited synchronous generator","authors":"H. M. Yassin, Ramadan Ragab Abdel Wahab, H. H. Hanafy","doi":"10.1177/0309524X221130718","DOIUrl":null,"url":null,"abstract":"This paper proposes an effective control technique for low voltage ride through (LVRT) capability in dual excited synchronous generator (DESG) wind turbines. The proposed control technique is dependent on controlling the field circuit parameters. Where the active power is controlled by the field-current space phasor magnitude and the reactive power is controlled by the field-voltage space phasor phase. With the proposed control strategy, the DESG can generate additional reactive power to support grid voltage recovery under grid faults. The DC-link voltage is kept within an acceptable limit since the excess power, due to the power mismatch between the mechanical and armature power is stored in the generator inertia. Using the proposed control strategy, the DESG can enhance the LVRT capability efficiently without using extra protection circuits or any additional control techniques during fault conditions. To test the proposed control method, simulation, and experimental results for a 1.1 kW DESG wind turbine system were obtained.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"18 1","pages":"369 - 384"},"PeriodicalIF":1.5000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524X221130718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes an effective control technique for low voltage ride through (LVRT) capability in dual excited synchronous generator (DESG) wind turbines. The proposed control technique is dependent on controlling the field circuit parameters. Where the active power is controlled by the field-current space phasor magnitude and the reactive power is controlled by the field-voltage space phasor phase. With the proposed control strategy, the DESG can generate additional reactive power to support grid voltage recovery under grid faults. The DC-link voltage is kept within an acceptable limit since the excess power, due to the power mismatch between the mechanical and armature power is stored in the generator inertia. Using the proposed control strategy, the DESG can enhance the LVRT capability efficiently without using extra protection circuits or any additional control techniques during fault conditions. To test the proposed control method, simulation, and experimental results for a 1.1 kW DESG wind turbine system were obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风力双励磁同步发电机LVRT性能研究
提出了一种有效的双励磁同步发电机(DESG)风力发电机组低压穿越(LVRT)能力控制技术。所提出的控制技术依赖于对场电路参数的控制。其中有功功率由场电流空间相量控制,无功功率由场电压空间相量控制。采用所提出的控制策略,DESG可以产生额外的无功功率,以支持电网故障时的电压恢复。直流链路电压保持在可接受的范围内,因为由于机械和电枢功率之间的功率不匹配而产生的多余功率存储在发电机惯性中。采用所提出的控制策略,DESG可以有效地提高LVRT的性能,而无需在故障情况下使用额外的保护电路或任何额外的控制技术。为了验证所提出的控制方法,获得了1.1 kW DESG风力发电系统的仿真和实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wind Engineering
Wind Engineering ENERGY & FUELS-
CiteScore
4.00
自引率
13.30%
发文量
81
期刊介绍: Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.
期刊最新文献
Extended state observer-based primary load frequency controller for power systems with ultra-high wind-energy penetration Quantifying the impact of sensor precision on power output of a wind turbine: A sensitivity analysis via Monte Carlo simulation study Design and realization of a pre-production platform for wind turbine manufacturing Analysis of wind power curve modeling using multi-model regression On the aerodynamics of dual-stage co-axial vertical-axis wind turbines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1