Learning from Fact-checkers: Analysis and Generation of Fact-checking Language

Nguyen Vo, Kyumin Lee
{"title":"Learning from Fact-checkers: Analysis and Generation of Fact-checking Language","authors":"Nguyen Vo, Kyumin Lee","doi":"10.1145/3331184.3331248","DOIUrl":null,"url":null,"abstract":"In fighting against fake news, many fact-checking systems comprised of human-based fact-checking sites (e.g., snopes.com and politifact.com) and automatic detection systems have been developed in recent years. However, online users still keep sharing fake news even when it has been debunked. It means that early fake news detection may be insufficient and we need another complementary approach to mitigate the spread of misinformation. In this paper, we introduce a novel application of text generation for combating fake news. In particular, we (1) leverage online users named fact-checkers, who cite fact-checking sites as credible evidences to fact-check information in public discourse; (2) analyze linguistic characteristics of fact-checking tweets; and (3) propose and build a deep learning framework to generate responses with fact-checking intention to increase the fact-checkers' engagement in fact-checking activities. Our analysis reveals that the fact-checkers tend to refute misinformation and use formal language (e.g. few swear words and Internet slangs). Our framework successfully generates relevant responses, and outperforms competing models by achieving up to 30% improvements. Our qualitative study also confirms that the superiority of our generated responses compared with responses generated from the existing models.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

In fighting against fake news, many fact-checking systems comprised of human-based fact-checking sites (e.g., snopes.com and politifact.com) and automatic detection systems have been developed in recent years. However, online users still keep sharing fake news even when it has been debunked. It means that early fake news detection may be insufficient and we need another complementary approach to mitigate the spread of misinformation. In this paper, we introduce a novel application of text generation for combating fake news. In particular, we (1) leverage online users named fact-checkers, who cite fact-checking sites as credible evidences to fact-check information in public discourse; (2) analyze linguistic characteristics of fact-checking tweets; and (3) propose and build a deep learning framework to generate responses with fact-checking intention to increase the fact-checkers' engagement in fact-checking activities. Our analysis reveals that the fact-checkers tend to refute misinformation and use formal language (e.g. few swear words and Internet slangs). Our framework successfully generates relevant responses, and outperforms competing models by achieving up to 30% improvements. Our qualitative study also confirms that the superiority of our generated responses compared with responses generated from the existing models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
向事实核查者学习:事实核查语言的分析与生成
在打击假新闻方面,近年来开发了许多由人工事实核查网站(如snopes.com和politifact.com)和自动检测系统组成的事实核查系统。然而,即使假新闻已经被揭穿,网民们仍然会继续分享假新闻。这意味着早期的假新闻检测可能是不够的,我们需要另一种补充方法来减轻错误信息的传播。在本文中,我们介绍了一种新的文本生成用于打击假新闻的应用。特别是,我们(1)利用被称为事实核查者的在线用户,他们引用事实核查网站作为可信证据,对公共话语中的信息进行事实核查;(2)分析事实核查推文的语言特征;(3)提出并构建一个深度学习框架,生成具有事实核查意图的回应,以提高事实核查者在事实核查活动中的参与度。我们的分析表明,事实核查者倾向于驳斥错误信息,并使用正式语言(例如很少使用脏话和网络俚语)。我们的框架成功地产生了相关的响应,并通过实现高达30%的改进而优于竞争模型。我们的定性研究也证实了我们生成的响应与现有模型生成的响应相比的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Task Completion Flows from Web APIs Session details: Session 6A: Social Media Sequence and Time Aware Neighborhood for Session-based Recommendations: STAN Adversarial Training for Review-Based Recommendations Hate Speech Detection is Not as Easy as You May Think: A Closer Look at Model Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1