Anisotropy barrier-induced unidirectional motion of spin wave driven skyrmion

Shipra Saini, A. Shukla, Namita Bindal, Sandeep Soni, Shailendra Yadav, B. Kaushik
{"title":"Anisotropy barrier-induced unidirectional motion of spin wave driven skyrmion","authors":"Shipra Saini, A. Shukla, Namita Bindal, Sandeep Soni, Shailendra Yadav, B. Kaushik","doi":"10.1117/12.2676810","DOIUrl":null,"url":null,"abstract":"The propagation of spin waves and their interaction with the spin solitons like skyrmions, domain walls and vortex are one of the promising ways for designing nanoscale spintronic devices. Magnetic skyrmion, a particle-like nanoscale object has potential applications in next-generation spintronic devices. In this paper, the unidirectional motion of the skyrmion under the influence of spin wave is studied using micromagnetic simulations. Here, two different magnetic anisotropies are considered on a nanotrack that creates an energy gradient. As a result, the repulsive forces act on the skyrmion and is responsible for the motion of the skyrmion in one direction. The spin wave driving force leads the skyrmion to move in forward direction and the anisotropy gradient is responsible to prevent the skyrmion motion in reverse direction. The skyrmion moves from higher perpendicular magnetic anisotropy region to lower energy region, leading to a unidirectional transport of the skyrmion. This proposed device has less Joule heating and is more energy efficient as compared to other spin transfer torque (STT) and spin orbit torque (SOT) driven techniques. This is due to the fact that spin wave can generate a flow of magnetic momentum without generating an electron flow. This spin wave driven skyrmionics device is a promising pathway towards the development of a complete non-charge based magnetic devices.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"124 1","pages":"126560W - 126560W-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2676810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The propagation of spin waves and their interaction with the spin solitons like skyrmions, domain walls and vortex are one of the promising ways for designing nanoscale spintronic devices. Magnetic skyrmion, a particle-like nanoscale object has potential applications in next-generation spintronic devices. In this paper, the unidirectional motion of the skyrmion under the influence of spin wave is studied using micromagnetic simulations. Here, two different magnetic anisotropies are considered on a nanotrack that creates an energy gradient. As a result, the repulsive forces act on the skyrmion and is responsible for the motion of the skyrmion in one direction. The spin wave driving force leads the skyrmion to move in forward direction and the anisotropy gradient is responsible to prevent the skyrmion motion in reverse direction. The skyrmion moves from higher perpendicular magnetic anisotropy region to lower energy region, leading to a unidirectional transport of the skyrmion. This proposed device has less Joule heating and is more energy efficient as compared to other spin transfer torque (STT) and spin orbit torque (SOT) driven techniques. This is due to the fact that spin wave can generate a flow of magnetic momentum without generating an electron flow. This spin wave driven skyrmionics device is a promising pathway towards the development of a complete non-charge based magnetic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自旋波驱动粒子的各向异性势垒诱导的单向运动
自旋波的传播及其与自旋孤子(如skyrmions、畴壁和涡旋)的相互作用是设计纳米级自旋电子器件的一种有前途的方法。磁性粒子是一种类似粒子的纳米级物体,在下一代自旋电子器件中具有潜在的应用前景。本文采用微磁模拟的方法研究了自旋波作用下粒子的单向运动。这里,在纳米轨道上考虑两种不同的磁各向异性,从而产生能量梯度。结果,斥力作用在天空上,并负责天空在一个方向上的运动。自旋波驱动力使粒子向前运动,各向异性梯度阻止粒子反向运动。粒子从垂直磁各向异性较高的区域向能量较低的区域运动,导致粒子单向输运。与其他自旋转移扭矩(STT)和自旋轨道扭矩(SOT)驱动技术相比,该装置具有更少的焦耳加热和更高的能源效率。这是因为自旋波可以产生磁动量流而不产生电子流。这种自旋波驱动的仿生装置是发展完全无电荷磁性器件的一条很有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Moiré metalens-based fluorescence optical sectioning microscopy Novel high entropy alloy (AgAlCuNiTi) hybridized MoS2/Si nanowires heterostructure with plasmonic enhanced photocatalytic activity Structured surface plasmon generated with interfered evanescent waves Dielectric nanoantenna stickers for photoluminescence control A new optomechanical interaction and a model with non-trivial classical dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1