{"title":"Origin of the B-dot jump observed in precision liner experiments","authors":"H. Lee, J. Stokes, W. Broste","doi":"10.1109/PPC.1995.599749","DOIUrl":null,"url":null,"abstract":"In the liner-ejecta experiments carried out at the Los Alamos pulsed power facility Pegasus II, a solid liner was magnetically imploded to impact on a target cylinder to produce the shock-induced ejecta. As a result of improved time resolution for the B-dot (dB/dt) probes fielded last fall, the authors began to notice a sharp jump in the B-dot curve occurring at a time very close to the expected liner-target collision time. This jump was also found in the time derivative of the calculated current (dI/dt) obtained from code simulation. They have shown that the jump is indeed caused by the collision as a sudden change of the liner velocity would induce a sudden jump in the time derivative of the inductance. They have derived a general formula for calculating the jump in dI/dt and verified that the result computed from it is in good agreement with the code simulation. Useful diagnostic applications of the B-dot jump are discussed.","PeriodicalId":11163,"journal":{"name":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.1995.599749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In the liner-ejecta experiments carried out at the Los Alamos pulsed power facility Pegasus II, a solid liner was magnetically imploded to impact on a target cylinder to produce the shock-induced ejecta. As a result of improved time resolution for the B-dot (dB/dt) probes fielded last fall, the authors began to notice a sharp jump in the B-dot curve occurring at a time very close to the expected liner-target collision time. This jump was also found in the time derivative of the calculated current (dI/dt) obtained from code simulation. They have shown that the jump is indeed caused by the collision as a sudden change of the liner velocity would induce a sudden jump in the time derivative of the inductance. They have derived a general formula for calculating the jump in dI/dt and verified that the result computed from it is in good agreement with the code simulation. Useful diagnostic applications of the B-dot jump are discussed.