Planetary mass–radius relations across the galaxy

A. Michel, J. Haldemann, C. Mordasini, Y. Alibert
{"title":"Planetary mass–radius relations across the galaxy","authors":"A. Michel, J. Haldemann, C. Mordasini, Y. Alibert","doi":"10.1051/0004-6361/201936916","DOIUrl":null,"url":null,"abstract":"Planet formation theory suggests that planet bulk compositions are likely to reflect the chemical abundance ratios of their host star's photosphere. Variations in the abundance of particular chemical species in stellar photospheres between different galactic stellar populations demonstrate that there are differences among the expected solid planet bulk compositions. We aim to present planetary mass-radius relations of solid planets for kinematically differentiated stellar populations, namely, the thin disc, thick disc, and halo. Using two separate internal structure models, we generated synthetic planets using bulk composition inputs derived from stellar abundances. We explored two scenarios, specifically iron-silicate planets at 0.1 AU and silicate-iron-water planets at 4 AU. We show that there is a persistent statistical difference in the expected mass-radius relations of solid planets among the different galactic stellar populations. At 0.1 AU for silicate-iron planets, there is a 1.51 to 2.04\\% mean planetary radius difference between the thick and thin disc stellar populations, whilst for silicate-iron-water planets past the ice line at 4 AU, we calculate a 2.93 to 3.26\\% difference depending on the models. Between the halo and thick disc, we retrieve at 0.1 AU a 0.53 to 0.69\\% mean planetary radius difference, and at 4 AU we find a 1.24 to 1.49\\% difference depending on the model. Future telescopes (such as PLATO) will be able to precisely characterize solid exoplanets and demonstrate the possible existence of planetary mass-radius relationship variability between galactic stellar populations.","PeriodicalId":8428,"journal":{"name":"arXiv: Earth and Planetary Astrophysics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/0004-6361/201936916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Planet formation theory suggests that planet bulk compositions are likely to reflect the chemical abundance ratios of their host star's photosphere. Variations in the abundance of particular chemical species in stellar photospheres between different galactic stellar populations demonstrate that there are differences among the expected solid planet bulk compositions. We aim to present planetary mass-radius relations of solid planets for kinematically differentiated stellar populations, namely, the thin disc, thick disc, and halo. Using two separate internal structure models, we generated synthetic planets using bulk composition inputs derived from stellar abundances. We explored two scenarios, specifically iron-silicate planets at 0.1 AU and silicate-iron-water planets at 4 AU. We show that there is a persistent statistical difference in the expected mass-radius relations of solid planets among the different galactic stellar populations. At 0.1 AU for silicate-iron planets, there is a 1.51 to 2.04\% mean planetary radius difference between the thick and thin disc stellar populations, whilst for silicate-iron-water planets past the ice line at 4 AU, we calculate a 2.93 to 3.26\% difference depending on the models. Between the halo and thick disc, we retrieve at 0.1 AU a 0.53 to 0.69\% mean planetary radius difference, and at 4 AU we find a 1.24 to 1.49\% difference depending on the model. Future telescopes (such as PLATO) will be able to precisely characterize solid exoplanets and demonstrate the possible existence of planetary mass-radius relationship variability between galactic stellar populations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
星系中行星的质量-半径关系
行星形成理论认为,行星的体积组成可能反映了其主星光球层的化学丰度比。不同星系恒星群中恒星光球中特定化学物质丰度的变化表明,在预期的固体行星体积组成之间存在差异。我们的目的是提出固体行星的行星质量半径关系的运动分化恒星群,即薄盘,厚盘和光晕。通过使用两个独立的内部结构模型,我们利用来自恒星丰度的大量成分输入生成了合成行星。我们探索了两种情况,特别是0.1 AU的铁硅酸盐行星和4 AU的硅酸盐铁水行星。我们表明,在不同星系恒星群中,固体行星的预期质量半径关系存在持续的统计差异。在0.1天文单位的硅酸盐-铁行星中,厚盘和薄盘恒星群之间的平均行星半径差异为1.51至2.04%,而在4天文单位的硅酸盐-铁-水行星中,我们根据模型计算出了2.93至3.26%的差异。在光晕和厚盘之间,我们在0.1天文单位获得0.53至0.69%的平均行星半径差,在4天文单位我们发现1.24至1.49%的差异取决于模型。未来的望远镜(如PLATO)将能够精确地描述固体系外行星的特征,并证明银河系恒星群之间可能存在行星质量-半径关系变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting The Averaged Problem in The Case of Mean-Motion Resonances of The Restricted Three-Body Problem. Global Rigorous Treatment and Application To The Co-Orbital Motion. Automatic planetary defense Deflecting NEOs by missiles shot from L1 and L3 (Earth-Moon). Modeling the nonaxisymmetric structure in the HD 163296 disk with planet-disk interaction Origin and dynamical evolution of the asteroid belt Revised planet brightness temperatures using the Planck/LFI 2018 data release
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1