{"title":"Few-shot Learning Using a Small-Sized Dataset of High-Resolution FUNDUS Images for Glaucoma Diagnosis","authors":"Mijung Kim, Jasper Zuallaert, W. D. Neve","doi":"10.1145/3132635.3132650","DOIUrl":null,"url":null,"abstract":"Deep learning has recently attracted a lot of attention, mainly thanks to substantial gains in terms of effectiveness. However, there is still room for significant improvement, especially when dealing with use cases that come with a limited availability of data, as is often the case in the area of medical image analysis. In this paper, we introduce a novel approach for early diagnosis of glaucoma in high-resolution FUNDUS images, only requiring a small number of training samples. In particular, we developed a predictive model based on a matching neural network architecture, integrating a high-resolution deep convolutional network that allows preserving the high-fidelity nature of the medical images. Our experimental results show that our predictive model is able to obtain higher levels of effectiveness than vanilla deep convolutional neural networks.","PeriodicalId":92693,"journal":{"name":"MMHealth'17 : proceedings of the 2nd International Workshop on Multimedia for Personal Health and Health Care : October 23, 2017, Mountain View, CA, USA. ACM Workshop on Multimedia for Personal Health and Health Care (2nd : 2017 : Mount...","volume":"321 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MMHealth'17 : proceedings of the 2nd International Workshop on Multimedia for Personal Health and Health Care : October 23, 2017, Mountain View, CA, USA. ACM Workshop on Multimedia for Personal Health and Health Care (2nd : 2017 : Mount...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132635.3132650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Deep learning has recently attracted a lot of attention, mainly thanks to substantial gains in terms of effectiveness. However, there is still room for significant improvement, especially when dealing with use cases that come with a limited availability of data, as is often the case in the area of medical image analysis. In this paper, we introduce a novel approach for early diagnosis of glaucoma in high-resolution FUNDUS images, only requiring a small number of training samples. In particular, we developed a predictive model based on a matching neural network architecture, integrating a high-resolution deep convolutional network that allows preserving the high-fidelity nature of the medical images. Our experimental results show that our predictive model is able to obtain higher levels of effectiveness than vanilla deep convolutional neural networks.