Adaptive evolutional strategy of particle filter for real time object tracking

Clementine Nyirarugira, Taeyong Kim
{"title":"Adaptive evolutional strategy of particle filter for real time object tracking","authors":"Clementine Nyirarugira, Taeyong Kim","doi":"10.1109/ICCE.2013.6486784","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient real time tracker that uses a differential evolution strategy within the particle filter framework. Particles are strategically propagated based on the maximum a posterior (most likely) object location with genetic operators. This enables the use of a small sample size and alleviates the frequent sample degeneracy and impoverishment problems encountered in particle filters. We reduce the sample size considerable while improving the trackers accuracy. This makes the proposed tracker a good candidate for real time object tracking or an embedded resource constrained tracker.","PeriodicalId":6432,"journal":{"name":"2013 IEEE International Conference on Consumer Electronics (ICCE)","volume":"33 1","pages":"35-36"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2013.6486784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose an efficient real time tracker that uses a differential evolution strategy within the particle filter framework. Particles are strategically propagated based on the maximum a posterior (most likely) object location with genetic operators. This enables the use of a small sample size and alleviates the frequent sample degeneracy and impoverishment problems encountered in particle filters. We reduce the sample size considerable while improving the trackers accuracy. This makes the proposed tracker a good candidate for real time object tracking or an embedded resource constrained tracker.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时目标跟踪的粒子滤波自适应进化策略
在本文中,我们提出了一种在粒子滤波框架内使用差分进化策略的高效实时跟踪器。利用遗传算子,基于最大后验(最可能)目标定位策略来传播粒子。这使得使用小样本量和减轻频繁的样本退化和贫困问题遇到的粒子过滤器。我们大大减少了样本数量,同时提高了跟踪器的精度。这使得所提出的跟踪器成为实时对象跟踪或嵌入式资源约束跟踪器的良好候选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monitoring and Controlling Industrial Cyber-Physical Systems with Digital Twin and Augmented Reality Proposal of fault detection and diagnosis system architecture for residential air conditioners based on the Internet of Things PSO and Kalman Filter-Based Node Motion Prediction for Data Collection from Ocean Wireless Sensors Network with UAV Complex activity recognition system based on cascade classifiers and wearable device data Virtualization of residential IoT functionality by using NFV and SDN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1