Multiple change-points detection in high dimension

Pub Date : 2019-10-23 DOI:10.1142/S201032631950014X
Yunlong Wang, Changliang Zou, Zhaojun Wang, G. Yin
{"title":"Multiple change-points detection in high dimension","authors":"Yunlong Wang, Changliang Zou, Zhaojun Wang, G. Yin","doi":"10.1142/S201032631950014X","DOIUrl":null,"url":null,"abstract":"Change-point detection is an integral component of statistical modeling and estimation. For high-dimensional data, classical methods based on the Mahalanobis distance are typically inapplicable. We propose a novel testing statistic by combining a modified Euclidean distance and an extreme statistic, and its null distribution is asymptotically normal. The new method naturally strikes a balance between the detection abilities for both dense and sparse changes, which gives itself an edge to potentially outperform existing methods. Furthermore, the number of change-points is determined by a new Schwarz’s information criterion together with a pre-screening procedure, and the locations of the change-points can be estimated via the dynamic programming algorithm in conjunction with the intrinsic order structure of the objective function. Under some mild conditions, we show that the new method provides consistent estimation with an almost optimal rate. Simulation studies show that the proposed method has satisfactory performance of identifying multiple change-points in terms of power and estimation accuracy, and two real data examples are used for illustration.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S201032631950014X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Change-point detection is an integral component of statistical modeling and estimation. For high-dimensional data, classical methods based on the Mahalanobis distance are typically inapplicable. We propose a novel testing statistic by combining a modified Euclidean distance and an extreme statistic, and its null distribution is asymptotically normal. The new method naturally strikes a balance between the detection abilities for both dense and sparse changes, which gives itself an edge to potentially outperform existing methods. Furthermore, the number of change-points is determined by a new Schwarz’s information criterion together with a pre-screening procedure, and the locations of the change-points can be estimated via the dynamic programming algorithm in conjunction with the intrinsic order structure of the objective function. Under some mild conditions, we show that the new method provides consistent estimation with an almost optimal rate. Simulation studies show that the proposed method has satisfactory performance of identifying multiple change-points in terms of power and estimation accuracy, and two real data examples are used for illustration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
高维多变化点检测
变化点检测是统计建模和估计的重要组成部分。对于高维数据,基于马氏距离的经典方法通常不适用。提出了一种将修正欧几里得距离与极值统计量相结合的检验统计量,其零分布是渐近正态分布。新方法自然地在密集和稀疏变化的检测能力之间取得了平衡,这使其本身具有潜在优于现有方法的优势。在此基础上,采用新的Schwarz信息准则和预筛选程序确定了变化点的数量,并结合目标函数的内在顺序结构,采用动态规划算法估计了变化点的位置。在一些温和的条件下,我们证明了新方法提供了几乎最优速率的一致性估计。仿真研究表明,该方法在功率和估计精度方面具有较好的多变点识别性能,并以两个实际数据实例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1