Long-term prediction of nitrogen dioxide concentrations using seasonal decomposition

B. Bizjak
{"title":"Long-term prediction of nitrogen dioxide concentrations using seasonal decomposition","authors":"B. Bizjak","doi":"10.1109/INFOTEH53737.2022.9751330","DOIUrl":null,"url":null,"abstract":"At higher concentrations of nitrogen dioxide, which is the most toxic nitric oxide, chronic bronchitis and asthmatic patients are particularly affected. For the city of Nova Gorica, Slovenia, we predicted monthly concentrations for 12 months in the coming year 2022. The first version of the forecast was performed with the classic SARIMA method - the general multiplicative seasonal model. A new method followed, here ARIMA, forecasting from the seasonally adjusted time series. For seasonal decompositions, we used Census Method 1 in the first version and Manual Seasonal Decomposition in the second version. According to the RMSE criteria, the forecast with separate seasonal decomposition models is 50% better than the basic general multiplicative seasonal model.","PeriodicalId":6839,"journal":{"name":"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)","volume":"201 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOTEH53737.2022.9751330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

At higher concentrations of nitrogen dioxide, which is the most toxic nitric oxide, chronic bronchitis and asthmatic patients are particularly affected. For the city of Nova Gorica, Slovenia, we predicted monthly concentrations for 12 months in the coming year 2022. The first version of the forecast was performed with the classic SARIMA method - the general multiplicative seasonal model. A new method followed, here ARIMA, forecasting from the seasonally adjusted time series. For seasonal decompositions, we used Census Method 1 in the first version and Manual Seasonal Decomposition in the second version. According to the RMSE criteria, the forecast with separate seasonal decomposition models is 50% better than the basic general multiplicative seasonal model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用季节分解长期预测二氧化氮浓度
高浓度的二氧化氮是毒性最大的一氧化氮,慢性支气管炎和哮喘患者受到的影响尤其严重。对于斯洛文尼亚的新戈里察市,我们预测了未来2022年12个月的月浓度。第一个版本的预报是用经典的SARIMA方法-一般乘法季节模型进行的。随后出现了一种新的方法,ARIMA,根据季节调整后的时间序列进行预测。对于季节分解,我们在第一个版本中使用Census Method 1,在第二个版本中使用Manual seasonal Decomposition。根据RMSE标准,单独季节分解模型的预报效果比基本的一般乘法季节模型的预报效果好50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PV system site selection using PVGIS and Fuzzy AHP Face Mask Detection Based on Machine Learning and Edge Computing Smart Production Systems: Methods and Application Analyzing the Effects of Abnormal Resonance Voltages using Artificial Neural Networks Real-Time Data Processing Techniques for a Scalable Spatial and Temporal Dimension Reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1