Dimitrios Papageorgiou, Antonis Sidiropoulos, Z. Doulgeri
{"title":"Sinc-Based Dynamic Movement Primitives for Encoding Point-to-point Kinematic Behaviors","authors":"Dimitrios Papageorgiou, Antonis Sidiropoulos, Z. Doulgeri","doi":"10.1109/IROS.2018.8594479","DOIUrl":null,"url":null,"abstract":"This work proposes the utilization of sinc functions as kernels of Dynamic Movement Primitives (DMP) models for encoding point-to-point kinematic behaviors. The proposed method presents a number of advantages with respect to the state of the art, as it (i) involves a simple learning technique, (ii) provides a method to determine the minimum required number of basis functions, based on the frequency content of the demonstrated motion and (iii) provides the ability to pre-define the reproduction accuracy of the learned behavior. The ability of the proposed model to accurately reproduce the behavior is demonstrated through simulations and experiments. Comparisons with the Gaussian-based DMP model show the proposed method's superiority in terms of computational complexity of learning and accuracy for a specific number of kernels.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"40 1","pages":"8339-8345"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8594479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This work proposes the utilization of sinc functions as kernels of Dynamic Movement Primitives (DMP) models for encoding point-to-point kinematic behaviors. The proposed method presents a number of advantages with respect to the state of the art, as it (i) involves a simple learning technique, (ii) provides a method to determine the minimum required number of basis functions, based on the frequency content of the demonstrated motion and (iii) provides the ability to pre-define the reproduction accuracy of the learned behavior. The ability of the proposed model to accurately reproduce the behavior is demonstrated through simulations and experiments. Comparisons with the Gaussian-based DMP model show the proposed method's superiority in terms of computational complexity of learning and accuracy for a specific number of kernels.