Long Live TIME: Improving Lifetime for Training-In-Memory Engines by Structured Gradient Sparsification

Yi Cai, Yujun Lin, Lixue Xia, Xiaoming Chen, Song Han, Yu Wang, Huazhong Yang
{"title":"Long Live TIME: Improving Lifetime for Training-In-Memory Engines by Structured Gradient Sparsification","authors":"Yi Cai, Yujun Lin, Lixue Xia, Xiaoming Chen, Song Han, Yu Wang, Huazhong Yang","doi":"10.1145/3195970.3196071","DOIUrl":null,"url":null,"abstract":"Deeper and larger Neural Networks (NNs) have made breakthroughs in many fields. While conventional CMOS-based computing platforms are hard to achieve higher energy efficiency. RRAM-based systems provide a promising solution to build efficient Training-In-Memory Engines (TIME). While the endurance of RRAM cells is limited, it’s a severe issue as the weights of NN always need to be updated for thousands to millions of times during training. Gradient sparsification can address this problem by dropping off most of the smaller gradients but introduce unacceptable computation cost. We proposed an effective framework, SGS-ARS, including Structured Gradient Sparsification (SGS) and Aging-aware Row Swapping (ARS) scheme, to guarantee write balance across whole RRAM crossbars and prolong the lifetime of TIME. Our experiments demonstrate that 356× lifetime extension is achieved when TIME is programmed to train ResNet-50 on Imagenet dataset with our SGS-ARS framework.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"32 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Deeper and larger Neural Networks (NNs) have made breakthroughs in many fields. While conventional CMOS-based computing platforms are hard to achieve higher energy efficiency. RRAM-based systems provide a promising solution to build efficient Training-In-Memory Engines (TIME). While the endurance of RRAM cells is limited, it’s a severe issue as the weights of NN always need to be updated for thousands to millions of times during training. Gradient sparsification can address this problem by dropping off most of the smaller gradients but introduce unacceptable computation cost. We proposed an effective framework, SGS-ARS, including Structured Gradient Sparsification (SGS) and Aging-aware Row Swapping (ARS) scheme, to guarantee write balance across whole RRAM crossbars and prolong the lifetime of TIME. Our experiments demonstrate that 356× lifetime extension is achieved when TIME is programmed to train ResNet-50 on Imagenet dataset with our SGS-ARS framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长寿命时间:通过结构化梯度稀疏化提高记忆中训练引擎的寿命
深度更大的神经网络(NNs)在许多领域取得了突破。而传统的基于cmos的计算平台很难实现更高的能效。基于ram的系统为构建高效的内存训练引擎(TIME)提供了一个很有前途的解决方案。虽然RRAM单元的寿命有限,但这是一个严重的问题,因为在训练过程中,神经网络的权重总是需要更新数千到数百万次。梯度稀疏化可以通过减少大多数较小的梯度来解决这个问题,但会引入不可接受的计算成本。我们提出了一种有效的框架SGS-ARS,包括结构化梯度稀疏(SGS)和老化感知行交换(ARS)方案,以保证整个RRAM交叉条的写平衡并延长TIME的生命周期。我们的实验表明,当使用我们的SGS-ARS框架编程TIME在Imagenet数据集上训练ResNet-50时,实现了356倍的寿命延长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft-FET: Phase transition material assisted Soft switching F ield E ffect T ransistor for supply voltage droop mitigation Modelling Multicore Contention on the AURIX™ TC27x Sign-Magnitude SC: Getting 10X Accuracy for Free in Stochastic Computing for Deep Neural Networks* Generalized Augmented Lagrangian and Its Applications to VLSI Global Placement* Side-channel security of superscalar CPUs : Evaluating the Impact of Micro-architectural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1