Modeling the Biosurfactant Fermentation by Geobacillus stearothermophilus DSM2313

IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL Periodica Polytechnica Chemical Engineering Pub Date : 2023-01-09 DOI:10.3311/ppch.20797
Réka Czinkóczky, Á. Németh
{"title":"Modeling the Biosurfactant Fermentation by Geobacillus stearothermophilus DSM2313","authors":"Réka Czinkóczky, Á. Németh","doi":"10.3311/ppch.20797","DOIUrl":null,"url":null,"abstract":"Biosurfactants are emerging molecules in the 21st century. However, their production intensification is still required for the development of feasible bioprocesses. Therefore, this paper studies a new biosurfactant-producer, namely Geobacillus stearothermophilus DSM2313 during statistical optimization via response surface methodology. After the statistical analysis the optimal pH = 7, glucose = 50 g/L and NH4NO3 = 2 g/L concentrations were determined. The biosurfactant production of the bacteria was predicted by our developed artificial neural network. The optimal harvesting time of the broth and the emulsification index values can be predicted simultaneously with the constructed artificial neural network. The best experiment was also kinetically described, and kinetic constants observed. Surface tension and emulsification activity were measured to characterize the formed products' efficiency. Based on these results, biosurfactants from Geobacillus stearothermophilus DSM2313 can act as bioemulsifier and can be applied for example in microbial enhanced oil recovery.","PeriodicalId":19922,"journal":{"name":"Periodica Polytechnica Chemical Engineering","volume":"42 8 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppch.20797","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 3

Abstract

Biosurfactants are emerging molecules in the 21st century. However, their production intensification is still required for the development of feasible bioprocesses. Therefore, this paper studies a new biosurfactant-producer, namely Geobacillus stearothermophilus DSM2313 during statistical optimization via response surface methodology. After the statistical analysis the optimal pH = 7, glucose = 50 g/L and NH4NO3 = 2 g/L concentrations were determined. The biosurfactant production of the bacteria was predicted by our developed artificial neural network. The optimal harvesting time of the broth and the emulsification index values can be predicted simultaneously with the constructed artificial neural network. The best experiment was also kinetically described, and kinetic constants observed. Surface tension and emulsification activity were measured to characterize the formed products' efficiency. Based on these results, biosurfactants from Geobacillus stearothermophilus DSM2313 can act as bioemulsifier and can be applied for example in microbial enhanced oil recovery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脂嗜热地杆菌DSM2313发酵生物表面活性剂的模拟
生物表面活性剂是21世纪新兴的分子。然而,它们的生产集约化仍然需要开发可行的生物工艺。因此,本文采用响应面法进行统计优化,研究了一种新的生物表面活性剂产生菌——嗜热硬脂地杆菌DSM2313。经统计分析,确定pH = 7、葡萄糖= 50 g/L、NH4NO3 = 2 g/L的最佳浓度。利用人工神经网络对细菌的生物表面活性剂产量进行了预测。利用构建的人工神经网络可以同时预测出肉汤的最佳收获时间和乳化指数值。对最佳实验也进行了动力学描述,并观察了动力学常数。通过测定表面张力和乳化活性来表征产物的乳化效率。基于这些结果,来自嗜热硬脂地杆菌DSM2313的生物表面活性剂可以作为生物乳化剂,应用于微生物提高采收率等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
7.70%
发文量
44
审稿时长
>12 weeks
期刊介绍: The main scope of the journal is to publish original research articles in the wide field of chemical engineering including environmental and bioengineering.
期刊最新文献
Research in Industrial Use of Ion Exchange and Simulation Tiered Approach for Assessing the Effective and Safe Applicability of Beech Wood Biochar for Soil Improvement Determining the Quintet Lifetimes in Side-ring Substituted [Fe(terpy)2]2+ Complexes Teszt_10.26_Accept Crystalline Forms of 4,4'-Methylenediantipyrine: Crystallographic Unit Cell for the Anhydrous Form, from Laboratory Powder XRD Pattern by DASH Program Package
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1