Effect of vegetation on flow hydraulics in compound open channels with non-prismatic floodplains

IF 2.1 4区 环境科学与生态学 Q2 ENGINEERING, CIVIL AQUA-Water Infrastructure Ecosystems and Society Pub Date : 2023-05-11 DOI:10.2166/aqua.2023.043
A. S. Rahim, H. Yonesi, H. Rahimi, B. Shahinejad, H. T. Podeh, H. M. Azamattulla
{"title":"Effect of vegetation on flow hydraulics in compound open channels with non-prismatic floodplains","authors":"A. S. Rahim, H. Yonesi, H. Rahimi, B. Shahinejad, H. T. Podeh, H. M. Azamattulla","doi":"10.2166/aqua.2023.043","DOIUrl":null,"url":null,"abstract":"\n \n The present paper aims to evaluate the effect of emergent rigid vegetation density on the flow's turbulence structure and hydraulic parameters at the non-prismatic floodplains. The experiments were performed using the physical model of the asymmetric non-prismatic compound channel. The results show that the velocity distribution in the vegetation flow is more influenced by the drag force caused by the vegetation than by the bed shear stress and does not follow the law of logarithmic velocity distribution throughout the non-prismatic section. The intense velocity gradient at the interface of the main channel and the floodplain leads to the development of strong secondary currents, increased Reynolds shear stresses, apparent shear stresses and momentum exchange in this region. Vegetation also decreases mean kinetic energy in the floodplain and increases it in the main channel. The mean turbulence exchange coefficient for the non-prismatic compound channels without vegetation was 0.23 and for the divergent and convergent compound channels was 0.035 and 0.020, respectively. The comparison of the local drag coefficient results shows that the fluctuations of this parameter are greater in the divergent section than in the convergent section due to the strong secondary currents in the interface.","PeriodicalId":34693,"journal":{"name":"AQUA-Water Infrastructure Ecosystems and Society","volume":"44 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AQUA-Water Infrastructure Ecosystems and Society","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/aqua.2023.043","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

Abstract

The present paper aims to evaluate the effect of emergent rigid vegetation density on the flow's turbulence structure and hydraulic parameters at the non-prismatic floodplains. The experiments were performed using the physical model of the asymmetric non-prismatic compound channel. The results show that the velocity distribution in the vegetation flow is more influenced by the drag force caused by the vegetation than by the bed shear stress and does not follow the law of logarithmic velocity distribution throughout the non-prismatic section. The intense velocity gradient at the interface of the main channel and the floodplain leads to the development of strong secondary currents, increased Reynolds shear stresses, apparent shear stresses and momentum exchange in this region. Vegetation also decreases mean kinetic energy in the floodplain and increases it in the main channel. The mean turbulence exchange coefficient for the non-prismatic compound channels without vegetation was 0.23 and for the divergent and convergent compound channels was 0.035 and 0.020, respectively. The comparison of the local drag coefficient results shows that the fluctuations of this parameter are greater in the divergent section than in the convergent section due to the strong secondary currents in the interface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植被对非棱柱形洪泛平原复合明渠水流水力学的影响
本文旨在评价非棱柱形洪泛区突发性刚性植被密度对水流湍流结构和水力参数的影响。实验采用非对称非棱柱形复合通道的物理模型进行。结果表明:植被流的速度分布受植被阻力的影响大于河床剪应力的影响,且在非棱柱剖面上不遵循对数速度分布规律;主河道与漫滩交界处的速度梯度较大,导致该区域次级流发育强烈,雷诺剪应力、视剪应力和动量交换增大。植被降低了河漫滩的平均动能,增加了主河道的平均动能。无植被的非棱柱形复合通道湍流交换系数均值为0.23,发散型和收敛型复合通道湍流交换系数均值分别为0.035和0.020。局部阻力系数结果的比较表明,由于界面中有较强的二次流,该参数在发散截面的波动要大于收敛截面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
20 weeks
期刊最新文献
Biogas production from water lilies, food waste, and sludge: substrate characterization and process performance How suitable is the gold-labelling method for the quantification of nanoplastics in natural water? Corrigendum: AQUA – Water Infrastructure, Ecosystems and Society 72 (7), 1115–1129: Application of system dynamics model for reservoir performance under future climatic scenarios in Gelevard Dam, Iran, Ali Babolhakami, Mohammad Ali Gholami Sefidkouhi and Alireza Emadi, https://dx.doi.org/10.2166/aqua.2023.193 Exploring the rise of AI-based smart water management systems Unraveling air–water two-phase flow patterns in water pipelines based on multiple signals and convolutional neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1