{"title":"An Intelligent Agent for Bilateral Negotiation with Unknown Opponents in Continuous-Time Domains","authors":"Siqi Chen, Gerhard Weiss","doi":"10.1145/2629577","DOIUrl":null,"url":null,"abstract":"Automated negotiation among self-interested autonomous agents has gained tremendous attention due to the diversity of its broad range of potential real-world applications. This article deals with a prominent type of such negotiations, namely, multiissue negotiation that runs under continuous-time constraints and in which the negotiating agents have no prior knowledge about their opponents’ preferences and strategies. A negotiation strategy called Dragon is described that employs sparse pseudoinput Gaussian processes. Specifically, Dragon enables an agent (1) to precisely model the behavior of its opponents with comparably low computational load and (2) to make decisions effectively and adaptively in very complex negotiation settings. Extensive experimental results, based on a number of negotiation scenarios and state-of-the-art negotiating agents from Automated Negotiating Agents Competitions, are provided. Moreover, the robustness of our strategy is evaluated through both empirical game-theoretic and spatial evolutionary game-theoretic analysis.","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"1 1","pages":"16:1-16:24"},"PeriodicalIF":2.2000,"publicationDate":"2014-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2629577","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 23
Abstract
Automated negotiation among self-interested autonomous agents has gained tremendous attention due to the diversity of its broad range of potential real-world applications. This article deals with a prominent type of such negotiations, namely, multiissue negotiation that runs under continuous-time constraints and in which the negotiating agents have no prior knowledge about their opponents’ preferences and strategies. A negotiation strategy called Dragon is described that employs sparse pseudoinput Gaussian processes. Specifically, Dragon enables an agent (1) to precisely model the behavior of its opponents with comparably low computational load and (2) to make decisions effectively and adaptively in very complex negotiation settings. Extensive experimental results, based on a number of negotiation scenarios and state-of-the-art negotiating agents from Automated Negotiating Agents Competitions, are provided. Moreover, the robustness of our strategy is evaluated through both empirical game-theoretic and spatial evolutionary game-theoretic analysis.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.