Best Approximate of Vector Space Model by Using SVD

R. Hadi
{"title":"Best Approximate of Vector Space Model by Using SVD","authors":"R. Hadi","doi":"10.23851/MJS.V28I2.509","DOIUrl":null,"url":null,"abstract":"A quick growth of internet technology makes it easy to assemble a huge volume of data as text document; e. g., journals, blogs, network pages, articles, email letters. In text mining application, increasing text space of datasets represent excessive task which makes it hard to pre-processing documents in efficient way to prepare it for text mining application like document clustering. The proposed system focuses on pre-processing document and reduction document space technique to prepare it for clustering technique. The mutual method for text mining problematic is vector space model (VSM), each term represent a features. Thus the proposed system create vector-space mod-el by using pre-processing method to reduce of trivial data from dataset. While the hug dimen-sionality of VSM is resolved by using low-rank SVD. Experiment results show that the proposed system give better document representation results about 10% from previous approach to prepare it for document clustering","PeriodicalId":7515,"journal":{"name":"Al-Mustansiriyah Journal of Sciences","volume":"21 1","pages":"143-149"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Mustansiriyah Journal of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23851/MJS.V28I2.509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A quick growth of internet technology makes it easy to assemble a huge volume of data as text document; e. g., journals, blogs, network pages, articles, email letters. In text mining application, increasing text space of datasets represent excessive task which makes it hard to pre-processing documents in efficient way to prepare it for text mining application like document clustering. The proposed system focuses on pre-processing document and reduction document space technique to prepare it for clustering technique. The mutual method for text mining problematic is vector space model (VSM), each term represent a features. Thus the proposed system create vector-space mod-el by using pre-processing method to reduce of trivial data from dataset. While the hug dimen-sionality of VSM is resolved by using low-rank SVD. Experiment results show that the proposed system give better document representation results about 10% from previous approach to prepare it for document clustering
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SVD的向量空间模型的最佳逼近
互联网技术的快速发展使得将大量数据集合为文本文档变得容易;例如,期刊、博客、网页、文章、电子邮件。在文本挖掘应用中,不断增加数据集的文本空间意味着工作量过大,难以有效地对文档进行预处理,为文档聚类等文本挖掘应用做好准备。该系统着重于文档预处理和文档空间缩减技术,为聚类技术做准备。文本挖掘问题的相互方法是向量空间模型(VSM),每个词代表一个特征。因此,该系统通过预处理方法从数据集中剔除琐碎数据,从而建立向量空间模型。而VSM的拥抱维数则采用低秩奇异值分解进行求解。实验结果表明,该系统的文档表示效果比之前的方法提高了10%左右,为文档聚类做好了准备
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis The Intensity of CO2 Emissions from Fossil Fuel Combustion in Iraq Rainwater Harvesting Using GIS Technique: A Case Study of Diyala Governorate, Iraq Climate index; Cold events; Extreme; Precipitations. Modelling Heat Transfer in Solar Distiller with Additional Condenser Studying Monitoring the Land Covers Around Al- Razaza Lake/ Iraq Based Upon Multi-Temporal Analysis Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1