Comprehensive Study of a FMaSynRM for forklift applications by FEM using open-source platform considering both electromagnetic design and modelling aspects

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Applied Electromagnetics and Mechanics Pub Date : 2023-03-16 DOI:10.3233/jae-220086
C. Di, X. Bao, Jin Pan, Chunyu Wang
{"title":"Comprehensive Study of a FMaSynRM for forklift applications by FEM using open-source platform considering both electromagnetic design and modelling aspects","authors":"C. Di, X. Bao, Jin Pan, Chunyu Wang","doi":"10.3233/jae-220086","DOIUrl":null,"url":null,"abstract":"A comprehensive study of a ferrite magnet assisted synchronous reluctance machine (FMaSynRM) for the forklift applications by using open-source platform is introduced in detail in this paper including both modelling and electromagnetic design aspects. On the electromagnetism modelling side, this paper uses Elmer as the core and combines other open-source packages covering the preprocessing, solving, and postprocessing sections to build the finite element model of the FMaSynRM. On the electromagnetic design side of the FMaSynRM, this paper mainly discusses the single-double layer winding arrangement, rotor topology, and demagnetization performance. And the power, efficiency, and current maps of the finalized machine at different speeds and loads are estimated by the finite element method (FEM) using the open-source platform, which takes different control logics into consideration. Finally, the predicted results by FEM are verified by the tested results. The modelling method by using open-source platform and design procedure of the FMaSynRM presented in this paper can also be used in the design of other electrical machine types in the adjustable speed applications.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"10 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-220086","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive study of a ferrite magnet assisted synchronous reluctance machine (FMaSynRM) for the forklift applications by using open-source platform is introduced in detail in this paper including both modelling and electromagnetic design aspects. On the electromagnetism modelling side, this paper uses Elmer as the core and combines other open-source packages covering the preprocessing, solving, and postprocessing sections to build the finite element model of the FMaSynRM. On the electromagnetic design side of the FMaSynRM, this paper mainly discusses the single-double layer winding arrangement, rotor topology, and demagnetization performance. And the power, efficiency, and current maps of the finalized machine at different speeds and loads are estimated by the finite element method (FEM) using the open-source platform, which takes different control logics into consideration. Finally, the predicted results by FEM are verified by the tested results. The modelling method by using open-source platform and design procedure of the FMaSynRM presented in this paper can also be used in the design of other electrical machine types in the adjustable speed applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于开源平台的叉车FMaSynRM电磁设计与建模有限元综合研究
本文详细介绍了基于开源平台的铁氧体磁体辅助同步磁阻电机(FMaSynRM)的建模和电磁设计。在电磁建模方面,本文以Elmer为核心,结合其他涵盖预处理、求解和后处理部分的开源软件包,构建FMaSynRM的有限元模型。在FMaSynRM的电磁设计方面,本文主要讨论了单双层绕组布置、转子拓扑结构和消磁性能。利用开源平台,在考虑不同控制逻辑的情况下,采用有限元法估算了不同速度和负载下定型机床的功率、效率和电流分布图。最后,用试验结果对有限元预测结果进行了验证。本文提出的基于开源平台的FMaSynRM建模方法和设计流程也可用于其他类型电机调速应用的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
4.6 months
期刊介绍: The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are: Physics and mechanics of electromagnetic materials and devices Computational electromagnetics in materials and devices Applications of electromagnetic fields and materials The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics. The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.
期刊最新文献
Large-stroke and high-precision coaxial integrated macro-micro composite actuator based on VCM and GMA Two complementary examples of electrification in the cement industry Design and test of capacitive power transfer coupling for wound field synchronous machines Analysis of current linkage harmonics in multi-phase machines with distributed windings Resonant coil matrix shielding for dynamic WPT systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1