An Efficient Regional Short-Term Load Forecasting Model for Smart Grid Energy Management

A. Muzumdar, Chirag N. Modi, C. Vyjayanthi
{"title":"An Efficient Regional Short-Term Load Forecasting Model for Smart Grid Energy Management","authors":"A. Muzumdar, Chirag N. Modi, C. Vyjayanthi","doi":"10.1109/IECON43393.2020.9254736","DOIUrl":null,"url":null,"abstract":"The conventional grid has experienced a transition towards smart grid with the advancements in metering infrastructure and increasing usage of renewable energy sources. In smart grid, the energy management system relies heavily on an accurate short-term load forecasting at regional level for an efficient planning and operations of grid.In this paper, we propose an efficient model for regional short-term load forecasting using machine learning techniques in parallel. This model uses feasible machine learning techniques such as support vector regressor (SVR) and random forest (RF) as base predictors. The forecasting results of RF and SVR are averaged to derive final outcome. The performance of the proposed model is validated using load data collected from different regions such as Goa, Maharashtra and Mumbai in India.","PeriodicalId":13045,"journal":{"name":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","volume":"1 1","pages":"2089-2094"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON43393.2020.9254736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The conventional grid has experienced a transition towards smart grid with the advancements in metering infrastructure and increasing usage of renewable energy sources. In smart grid, the energy management system relies heavily on an accurate short-term load forecasting at regional level for an efficient planning and operations of grid.In this paper, we propose an efficient model for regional short-term load forecasting using machine learning techniques in parallel. This model uses feasible machine learning techniques such as support vector regressor (SVR) and random forest (RF) as base predictors. The forecasting results of RF and SVR are averaged to derive final outcome. The performance of the proposed model is validated using load data collected from different regions such as Goa, Maharashtra and Mumbai in India.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向智能电网能源管理的高效区域短期负荷预测模型
随着计量基础设施的进步和可再生能源使用的增加,传统电网已经经历了向智能电网的过渡。在智能电网中,能源管理系统在很大程度上依赖于准确的区域短期负荷预测,以实现电网的高效规划和运行。在本文中,我们提出了一个有效的模型,区域短期负荷预测使用机器学习技术并行。该模型使用可行的机器学习技术,如支持向量回归器(SVR)和随机森林(RF)作为基本预测因子。将RF和SVR的预测结果进行平均,得出最终结果。利用印度果阿邦、马哈拉施特拉邦和孟买等不同地区收集的负荷数据验证了所提出模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A DCT/PET Submodule with Symmetrical Bipolar DC Outputs High-precision Sensorless Control Based on Magnetic Flux/Current Method for SRM Starting/Generating System Implementation of a Wireless Sensor Network Designed to Be Embedded in Reinforced Concrete H∞ Consensus Control for Discrete-Time Stochastic Multi-agent Systems with Infinite Markov Jumps Attitude stabilization for aircraft under angular velocity constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1