HW-CVD deposited μc-Si:H for the inverted heterojunction solar cell

Y. Matsumoto, M. Ortega, V. Sanchez, F. Wunsch, J. Urbano
{"title":"HW-CVD deposited μc-Si:H for the inverted heterojunction solar cell","authors":"Y. Matsumoto, M. Ortega, V. Sanchez, F. Wunsch, J. Urbano","doi":"10.1109/PVSC.2010.5614432","DOIUrl":null,"url":null,"abstract":"P-type-microcrystalline-silicon / n-type-crystalline-silicon hetero-junction solar cell has been prepared by means of hot-wire chemical vapor deposition (HW-CVD) technique. The solar cell structure was illuminated on the opposite side of the normally-formed heterojunction. With this inverted structure, the photovoltaic cell has the design potential to improve the light-incident surface-texturing with the possibility to avoid the use of transparent conducting oxide (TCO). Solar cells were fabricated on Czochralsky (CZ)-grown phosphorous-doped crystalline-silicon (c-Si) substrates within 0.5 to 1 ohm-cm. HW-CVD has employed for the deposition of a very thin intrinsic hydrogenated amorphous silicon (i-a-Si) as a buffer-layer as a heterojunction interface, and boron-doped hydrogenated microcrystalline silicon (p-μc-Si) on c-Si substrate. The tungsten catalyst temperature (Tfil) was settled to 1600 °C and 1950 °C for i-a-Si and p-μc-Si films, respectively. Silane (SiH4), hydrogen (H2) and diluted diborane (B2H6) gases were used for p-μc-Si at the substrate temperatures (Tsub) of 200 °C. The obtained I–V characteristics under simulated solar radiation at 100mW/cm2 are: Jsc =26.1 mA/cm2; Voc = 545 mV; Jm = 21.4 mA/cm2; Vm = 410 mV; FF = 61.7%, with total area efficiency of η= 8.8%. The solar cell has great potential to improve its conversion efficiency with proper surface passivation and antireflection coat.","PeriodicalId":6424,"journal":{"name":"2010 35th IEEE Photovoltaic Specialists Conference","volume":"72 1","pages":"001450-001455"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 35th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2010.5614432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

P-type-microcrystalline-silicon / n-type-crystalline-silicon hetero-junction solar cell has been prepared by means of hot-wire chemical vapor deposition (HW-CVD) technique. The solar cell structure was illuminated on the opposite side of the normally-formed heterojunction. With this inverted structure, the photovoltaic cell has the design potential to improve the light-incident surface-texturing with the possibility to avoid the use of transparent conducting oxide (TCO). Solar cells were fabricated on Czochralsky (CZ)-grown phosphorous-doped crystalline-silicon (c-Si) substrates within 0.5 to 1 ohm-cm. HW-CVD has employed for the deposition of a very thin intrinsic hydrogenated amorphous silicon (i-a-Si) as a buffer-layer as a heterojunction interface, and boron-doped hydrogenated microcrystalline silicon (p-μc-Si) on c-Si substrate. The tungsten catalyst temperature (Tfil) was settled to 1600 °C and 1950 °C for i-a-Si and p-μc-Si films, respectively. Silane (SiH4), hydrogen (H2) and diluted diborane (B2H6) gases were used for p-μc-Si at the substrate temperatures (Tsub) of 200 °C. The obtained I–V characteristics under simulated solar radiation at 100mW/cm2 are: Jsc =26.1 mA/cm2; Voc = 545 mV; Jm = 21.4 mA/cm2; Vm = 410 mV; FF = 61.7%, with total area efficiency of η= 8.8%. The solar cell has great potential to improve its conversion efficiency with proper surface passivation and antireflection coat.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HW-CVD沉积了反向异质结太阳能电池的μc-Si:H
采用热线化学气相沉积(HW-CVD)技术制备了p型微晶硅/ n型晶硅异质结太阳电池。在正常形成的异质结的另一侧照射太阳能电池结构。通过这种倒置结构,光伏电池具有改善光入射表面纹理的设计潜力,并有可能避免使用透明导电氧化物(TCO)。太阳能电池是在CZ生长的掺磷晶体硅(c-Si)衬底上制备的,衬底尺寸在0.5 ~ 1欧姆-厘米之间。本征氢化非晶硅(i-a-Si)作为缓冲层作为异质结界面,在c-Si衬底上制备了掺硼氢化微晶硅(p-μc-Si)。对于i-a-Si和p-μc-Si薄膜,钨催化剂温度(Tfil)分别稳定在1600℃和1950℃。p-μc-Si采用硅烷(SiH4)、氢气(H2)和稀释二硼烷(B2H6)气体,衬底温度(Tsub)为200℃。在100mW/cm2模拟太阳辐射下得到的I-V特性为:Jsc =26.1 mA/cm2;Voc = 545 mV;Jm = 21.4 mA/cm2;Vm = 410 mV;FF = 61.7%,总表面积效率η= 8.8%。通过适当的表面钝化和增透涂层,提高太阳能电池的转换效率具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reaching grid parity using BP Solar crystalline silicon technology Interaction between post wire saw cleaning and the subsequent cell fabrication saw damage etch and texturing process Durability evaluation of InGaP/GaAs/Ge triple-junction solar cells in HIHT environments for Mercury exploration mission Impact of materials on back-contact module reliability Paste development for screen printed mc-Si MWT solar cells exceeding 17% efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1