Subgroup analysis for multi-response regression

Q4 Engineering 中国科学技术大学学报 Pub Date : 2021-01-01 DOI:10.52396/just-2021-0053
Wu Jie, Z. Jia, Zheng Zemin
{"title":"Subgroup analysis for multi-response regression","authors":"Wu Jie, Z. Jia, Zheng Zemin","doi":"10.52396/just-2021-0053","DOIUrl":null,"url":null,"abstract":": Correctly identifying the subgroups in a heterogeneous population has gained increasing popularity in modern big data applications since studying the heterogeneous effect can eliminate the impact of individual differences and make the estimation results more accurate. Despite the fast growing literature , most existing methods mainly focus on the heterogeneous univariate regression and how to precisely identify subgroups in face of multiple responses remains unclear. Here , we develop a new methodology for heterogeneous multi-response regression via a concave pairwise fusion approach , which estimates the coefficient matrix and identifies the subgroup structure jointly. Besides , we provide theoretical guarantees for the proposed methodology by establishing the estimation consistency. Our numerical studies demonstrate the effectiveness of the proposed method.","PeriodicalId":17548,"journal":{"name":"中国科学技术大学学报","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国科学技术大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.52396/just-2021-0053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

: Correctly identifying the subgroups in a heterogeneous population has gained increasing popularity in modern big data applications since studying the heterogeneous effect can eliminate the impact of individual differences and make the estimation results more accurate. Despite the fast growing literature , most existing methods mainly focus on the heterogeneous univariate regression and how to precisely identify subgroups in face of multiple responses remains unclear. Here , we develop a new methodology for heterogeneous multi-response regression via a concave pairwise fusion approach , which estimates the coefficient matrix and identifies the subgroup structure jointly. Besides , we provide theoretical guarantees for the proposed methodology by establishing the estimation consistency. Our numerical studies demonstrate the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多响应回归的亚组分析
:正确识别异质群体中的子群在现代大数据应用中越来越受欢迎,因为研究异质效应可以消除个体差异的影响,使估计结果更加准确。尽管文献快速增长,但现有的方法大多集中在异质性单变量回归上,如何在多重响应下准确识别亚群尚不清楚。本文提出了一种基于凹对融合的异质多响应回归方法,该方法可以估计系数矩阵并共同识别子群结构。此外,通过建立估计一致性为所提出的方法提供了理论保证。我们的数值研究证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
中国科学技术大学学报
中国科学技术大学学报 Engineering-Mechanical Engineering
CiteScore
0.40
自引率
0.00%
发文量
5692
期刊介绍:
期刊最新文献
Predicting vapor-liquid equilibria of CO<sub>2</sub>+HFC binary mixtures by the PR EOS combined with a group contribution model Design of novel double-layer wrapped ammonium polyphosphate and its application in aging-resistant and flame retardant crosslinked polyethylene composites Effects of residual stress caused by abrasion on the flexoelectric response of BaTiO<sub>3</sub> ceramics Thermophysical properties of 1D materials: Transient characterization down to atomic level Attention: The impact of media attention on market reaction to corporate violations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1