{"title":"Principal Foliations of Surfaces near Ellipsoids","authors":"J. Guckenheimer","doi":"10.53733/126","DOIUrl":null,"url":null,"abstract":"The lines of curvature of a surface embedded in $\\R^3$ comprise its principal foliations. Principal foliations of surfaces embedded in $\\R^3$ resemble phase portraits of two dimensional vector fields, but there are significant differences in their geometry because principal foliations are not orientable. The Poincar\\'e-Bendixson Theorem precludes flows on the two sphere $S^2$ with recurrent trajectories larger than a periodic orbit, but there are convex surfaces whose principal foliations are closely related to non-vanishing vector fields on the torus $T^2$. This paper investigates families of such surfaces that have dense lines of curvature at a Cantor set $C$ of parameters. It introduces discrete one dimensional return maps of a cross-section whose trajectories are the intersections of a line of curvature with the cross-section. The main result proved here is that the return map of a generic surface has \\emph{breaks}; i.e., jump discontinuities of its derivative. Khanin and Vul discovered a qualitative difference between one parameter families of smooth diffeomorphisms of the circle and those with breaks: smooth families have positive Lebesgue measure sets of parameters with irrational rotation number and dense trajectories while families of diffeomorphisms with a single break do not. This paper discusses whether Lebesgue almost all parameters yield closed lines of curvature in families of embedded surfaces.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The lines of curvature of a surface embedded in $\R^3$ comprise its principal foliations. Principal foliations of surfaces embedded in $\R^3$ resemble phase portraits of two dimensional vector fields, but there are significant differences in their geometry because principal foliations are not orientable. The Poincar\'e-Bendixson Theorem precludes flows on the two sphere $S^2$ with recurrent trajectories larger than a periodic orbit, but there are convex surfaces whose principal foliations are closely related to non-vanishing vector fields on the torus $T^2$. This paper investigates families of such surfaces that have dense lines of curvature at a Cantor set $C$ of parameters. It introduces discrete one dimensional return maps of a cross-section whose trajectories are the intersections of a line of curvature with the cross-section. The main result proved here is that the return map of a generic surface has \emph{breaks}; i.e., jump discontinuities of its derivative. Khanin and Vul discovered a qualitative difference between one parameter families of smooth diffeomorphisms of the circle and those with breaks: smooth families have positive Lebesgue measure sets of parameters with irrational rotation number and dense trajectories while families of diffeomorphisms with a single break do not. This paper discusses whether Lebesgue almost all parameters yield closed lines of curvature in families of embedded surfaces.