{"title":"Research on the Hydrodynamic Performance of Zero Speed Fin Stabilizer","authors":"Yuefeng Wei, Yi Yang","doi":"10.1115/omae2021-62889","DOIUrl":null,"url":null,"abstract":"\n Nowadays, zero speed fin stabilizer has been initially applied in ship. Whether zero speed fin stabilizer can generate enough lift moment to resist rolling moment or not, determines the anti-rolling effect of ship at zero speed. In the present paper, numerical model is proposed to calculate the lift force and moment of zero speed fin stabilizer. The results of numerical calculation are verified by model test results and the hydrodynamic performance of zero speed fin stabilizer are studied. The numerical results are in good agreement with the model test results. For different swing angular velocity of a zero speed fin stabilizer, the lift force and moment of zero speed fin stabilizer reach the maximum at the same swing angle. For the same swing angle of a zero speed fin stabilizer, the lift force and moment of zero speed fin stabilizer are proportional to the square of angular velocity.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2021-62889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, zero speed fin stabilizer has been initially applied in ship. Whether zero speed fin stabilizer can generate enough lift moment to resist rolling moment or not, determines the anti-rolling effect of ship at zero speed. In the present paper, numerical model is proposed to calculate the lift force and moment of zero speed fin stabilizer. The results of numerical calculation are verified by model test results and the hydrodynamic performance of zero speed fin stabilizer are studied. The numerical results are in good agreement with the model test results. For different swing angular velocity of a zero speed fin stabilizer, the lift force and moment of zero speed fin stabilizer reach the maximum at the same swing angle. For the same swing angle of a zero speed fin stabilizer, the lift force and moment of zero speed fin stabilizer are proportional to the square of angular velocity.