Fabrication of Polycaprolactone -Silica Aerogel Nanofibers via Electrospinning Method

IF 0.8 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Nano Research Pub Date : 2022-05-10 DOI:10.4028/p-9w4o39
M. Ceylan, E. Yılmaz
{"title":"Fabrication of Polycaprolactone -Silica Aerogel Nanofibers via Electrospinning Method","authors":"M. Ceylan, E. Yılmaz","doi":"10.4028/p-9w4o39","DOIUrl":null,"url":null,"abstract":"The field of nanotechnology has seen rapid advancements over the last decade. Nanofiber production through the method of electrospinning is one of the attraction points in this area. The nanofibers, prepared with nano-sized additives, particularly with polymer, have an extensive range of usages. This study utilizes silica aerogels obtained by the sol-gel method due to their low density of 700-800 gr/m2. Polycaprolactone (PCL)-Silica Aerogel Nanofibers were attained by adding 0.5%,1%, 2%and 4% of previously produced aerogels to the nanofibers formed by electrospinning. This paper correspondingly examined the differences between AC-CL and MET-CL solvent groups being utilized during the preparation of the solutions. In addition to this examination, series of material tests were conducted, such as tensile test, SEM, FTIR, DTA/TG, and BET. Overall, the resultant nanofibers with a property of high surface area can be utilized in the design of materials applied to many areas, including solar devices, solar pools, sensors, and capacitors.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"36 1","pages":"161 - 174"},"PeriodicalIF":0.8000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-9w4o39","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

The field of nanotechnology has seen rapid advancements over the last decade. Nanofiber production through the method of electrospinning is one of the attraction points in this area. The nanofibers, prepared with nano-sized additives, particularly with polymer, have an extensive range of usages. This study utilizes silica aerogels obtained by the sol-gel method due to their low density of 700-800 gr/m2. Polycaprolactone (PCL)-Silica Aerogel Nanofibers were attained by adding 0.5%,1%, 2%and 4% of previously produced aerogels to the nanofibers formed by electrospinning. This paper correspondingly examined the differences between AC-CL and MET-CL solvent groups being utilized during the preparation of the solutions. In addition to this examination, series of material tests were conducted, such as tensile test, SEM, FTIR, DTA/TG, and BET. Overall, the resultant nanofibers with a property of high surface area can be utilized in the design of materials applied to many areas, including solar devices, solar pools, sensors, and capacitors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
静电纺丝法制备聚己内酯-二氧化硅气凝胶纳米纤维
纳米技术领域在过去十年中取得了迅速的发展。静电纺丝法生产纳米纤维是该领域的热点之一。用纳米级添加剂,特别是聚合物制备的纳米纤维具有广泛的用途。本研究使用溶胶-凝胶法获得的二氧化硅气凝胶,因为它们的密度很低,为700-800克/平方米。在静电纺丝制备的纳米纤维中分别加入0.5%、1%、2%和4%的原制备气凝胶,制备了聚己内酯-二氧化硅纳米纤维。本文相应地考察了在溶液制备过程中所使用的AC-CL和MET-CL溶剂基团之间的差异。除此之外,还进行了一系列的材料测试,如拉伸试验、SEM、FTIR、DTA/TG、BET等。综上所述,所得到的纳米纤维具有高表面积的特性,可用于许多领域的材料设计,包括太阳能器件、太阳能池、传感器和电容器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nano Research
Journal of Nano Research 工程技术-材料科学:综合
CiteScore
2.40
自引率
5.90%
发文量
55
审稿时长
4 months
期刊介绍: "Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results. "Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited. Authors retain the right to publish an extended and significantly updated version in another periodical.
期刊最新文献
Mean Field Study of a Cylindrical Ferrimagnetic Nanotube with Different Anisotropies The Influence of Reaction Medium pH on the Structure, Optical, and Mechanical Properties of Nanosized Cu-Fe Ferrite Synthesized by the Sol-Gel Autocombustion Method Fabrication and Characterization of Eco-Friendly Polystyrene Based Zinc Oxide-Graphite (PS/ZnO-G) Hierarchical CoP@NiMn-P Nanocomposites Grown on Carbon Cloth for High-Performance Supercapacitor Electrodes High-Transconductance and Low-Leakage Current Single Aluminum Nitride Nanowire Field Effect Transistor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1