{"title":"Towards a Visible to Mid-Infrared Astrocomb for the Extremely Large Telescope","authors":"Yuk Shan Cheng, D. Xiao, R. McCracken, D. Reid","doi":"10.1109/CLEOE-EQEC.2019.8871925","DOIUrl":null,"url":null,"abstract":"The Extremely Large Telescope (ELT), currently under construction in Chile, aims to investigate exoplanet atmospheric spectroscopy, star / planet formation and evolution, and cosmology and fundamental physics with a broadband high-resolution spectrograph, designated ELT-HIRES. Comprising four modules covering wavelengths from 370–2500 nm, this instrument requires laser comb calibration with mode spacings from 32 GHz (<600 nm) to 6 GHz (>1950 nm). As illustrated by our recent review paper [1], approaches to date based on nonlinear broadening of a single ultrafast oscillator still fall significantly short of the required coverage. Here we present a new approach yielding a nearly-continuous 500–2200 nm 1-GHz comb from dual supercontinua sources pumped by an 805-nm Ti:sapphire oscillator and phase coherent 1610-nm pulses from a degenerate optical parametric oscillator (OPO) [2].","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"15 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE-EQEC.2019.8871925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The Extremely Large Telescope (ELT), currently under construction in Chile, aims to investigate exoplanet atmospheric spectroscopy, star / planet formation and evolution, and cosmology and fundamental physics with a broadband high-resolution spectrograph, designated ELT-HIRES. Comprising four modules covering wavelengths from 370–2500 nm, this instrument requires laser comb calibration with mode spacings from 32 GHz (<600 nm) to 6 GHz (>1950 nm). As illustrated by our recent review paper [1], approaches to date based on nonlinear broadening of a single ultrafast oscillator still fall significantly short of the required coverage. Here we present a new approach yielding a nearly-continuous 500–2200 nm 1-GHz comb from dual supercontinua sources pumped by an 805-nm Ti:sapphire oscillator and phase coherent 1610-nm pulses from a degenerate optical parametric oscillator (OPO) [2].