MCMC with Strings and Branes: The Suburban Algorithm

J. Heckman, J. Bernstein, B. Vigoda
{"title":"MCMC with Strings and Branes: The Suburban Algorithm","authors":"J. Heckman, J. Bernstein, B. Vigoda","doi":"10.1142/S0217751X17501330","DOIUrl":null,"url":null,"abstract":"Motivated by the physics of strings and branes, we introduce a general suite of Markov chain Monte Carlo (MCMC) \"suburban samplers\" (i.e., spread out Metropolis). The suburban algorithm involves an ensemble of statistical agents connected together by a random network. Performance of the collective in reaching a fast and accurate inference depends primarily on the average number of nearest neighbor connections. Increasing the average number of neighbors above zero initially leads to an increase in performance, though there is a critical connectivity with effective dimension d_eff ~ 1, above which \"groupthink\" takes over, and the performance of the sampler declines.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217751X17501330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Motivated by the physics of strings and branes, we introduce a general suite of Markov chain Monte Carlo (MCMC) "suburban samplers" (i.e., spread out Metropolis). The suburban algorithm involves an ensemble of statistical agents connected together by a random network. Performance of the collective in reaching a fast and accurate inference depends primarily on the average number of nearest neighbor connections. Increasing the average number of neighbors above zero initially leads to an increase in performance, though there is a critical connectivity with effective dimension d_eff ~ 1, above which "groupthink" takes over, and the performance of the sampler declines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带字符串和膜的MCMC:郊区算法
基于弦和膜的物理性质,我们引入了一套通用的马尔可夫链蒙特卡罗算法。“郊区采样者”(即分散在大都市)。郊区算法涉及一个由随机网络连接在一起的统计代理的集合。集体在达到快速和准确推断方面的性能主要取决于最近邻连接的平均数量。将邻居的平均数量增加到零以上,最初会导致性能的提高,尽管有效维数d_eff ~ 1存在一个关键的连通性,超过这个连通性,“群体思维”就会起作用,采样器的性能就会下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1