{"title":"Modified algorithms for signal nonlinear trend detection","authors":"N. Tulyakova, O. Trofymchuk","doi":"10.30837/rt.2021.3.206.13","DOIUrl":null,"url":null,"abstract":"There is a problem of nonlinear (abrupt) signal trend detection in many digital signals processing practical applications. In particular, in the field of biomedical signals processing, the actual task is the elimination of abrupt signal baseline distortions caused by the patient's movements. For processing such signals containing edges and other discontinues, linear filtering based on discrete Fourier or cosine transforms leads to significant smoothing of a signal. Median type algorithms related to nonlinear stable (robust) filters are successfully applied for filtering such signals, in particular, high efficiency is provided by median hybrid filters with finite impulse response (FIR). The article considers simple algorithms of the class of FIR-median hybrid filters used for signal nonlinear trend detection. It is proposed to modify these algorithms by replacing the operation of finding the median of the data in the sliding filter window with the calculation of their myriad, as well as adding weights (number of duplications) to certain window elements. Statistical estimates of filter efficiency according to the mean square error (MSE) criterion for test signals like “step” and “ramp” edges, and triangular peak and parabola have been obtained. The high efficiency of the investigated nonlinear filters for the listed test signals types and the improvements achieved as a result of the proposed filter modifications are shown based on the analysis of the filter output signals and statistical estimates of their quality. Some examples of processing biomedical signals of electroencephalograms which illustrate good quality of noise suppression and signal abrupt changes preservation, and motion artifacts removal without large signal distortions are given.","PeriodicalId":41675,"journal":{"name":"Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30837/rt.2021.3.206.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
There is a problem of nonlinear (abrupt) signal trend detection in many digital signals processing practical applications. In particular, in the field of biomedical signals processing, the actual task is the elimination of abrupt signal baseline distortions caused by the patient's movements. For processing such signals containing edges and other discontinues, linear filtering based on discrete Fourier or cosine transforms leads to significant smoothing of a signal. Median type algorithms related to nonlinear stable (robust) filters are successfully applied for filtering such signals, in particular, high efficiency is provided by median hybrid filters with finite impulse response (FIR). The article considers simple algorithms of the class of FIR-median hybrid filters used for signal nonlinear trend detection. It is proposed to modify these algorithms by replacing the operation of finding the median of the data in the sliding filter window with the calculation of their myriad, as well as adding weights (number of duplications) to certain window elements. Statistical estimates of filter efficiency according to the mean square error (MSE) criterion for test signals like “step” and “ramp” edges, and triangular peak and parabola have been obtained. The high efficiency of the investigated nonlinear filters for the listed test signals types and the improvements achieved as a result of the proposed filter modifications are shown based on the analysis of the filter output signals and statistical estimates of their quality. Some examples of processing biomedical signals of electroencephalograms which illustrate good quality of noise suppression and signal abrupt changes preservation, and motion artifacts removal without large signal distortions are given.