{"title":"Photocatalytic Decolourization of Rhodamine B by Modified Photo-Fenton Process with Quasicrystals – Preliminary Research","authors":"S. Łoński, W. Łoński, R. Babilas, K. Barbusiński","doi":"10.2478/acee-2023-0026","DOIUrl":null,"url":null,"abstract":"Abstract A novel photocatalytic process using a modification of photo-Fenton reaction, with sodium percarbonate (SP), as an alternative source of H2O2, and alloy Al65Cu20Fe15 containing, among others, quasicrystals (of the percentage composition Al65Cu20Fe15), being a source of iron ions, effectively decolourizes the aqueous solution of rhodamine B (RB; solution of 5 mg/l). The source of UV radiation was a lamp with a power of 36 W. The experiments were carried out at pH = 7 and reaction time (from 5 to 60 min). The increase in SP concentration (in the range of 8.3 to 33.3 g/l) significantly increased the degree of degradation of RB and the reaction rate. However, the use of quasicrystals, in the range of 8.3 to 33.3 g/l, was also important in the modified photocatalytic photo-Fenton process. The best degradation effects of RB (95%) were obtained for the highest SP concentration of 33.3 g/l and the lowest quasicrystal concentration of 8.3 g/l. On the other hand, visual decolourization of RB was obtained with an efficiency of 70% for SP and quasicrystal concentrations of 16.7 g/l and 16.7 g/l, respectively, after 45 minutes, and for SP and quasicrystal concentrations of 33.3 g/l and 8.3 g/l, respectively, after the time of 20 minutes. The best RB degradation effects in the comparative method (UV/Na2CO3·1.5H2O2 without the addition of quasicrystals) were only 52.7%. The obtained results encourage further research to optimize the conditions of the proposed method and to investigate its applicability to other types of dyes and pollutants.","PeriodicalId":8117,"journal":{"name":"Architecture Civil Engineering Environment","volume":"4 1","pages":"171 - 176"},"PeriodicalIF":0.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Architecture Civil Engineering Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acee-2023-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract A novel photocatalytic process using a modification of photo-Fenton reaction, with sodium percarbonate (SP), as an alternative source of H2O2, and alloy Al65Cu20Fe15 containing, among others, quasicrystals (of the percentage composition Al65Cu20Fe15), being a source of iron ions, effectively decolourizes the aqueous solution of rhodamine B (RB; solution of 5 mg/l). The source of UV radiation was a lamp with a power of 36 W. The experiments were carried out at pH = 7 and reaction time (from 5 to 60 min). The increase in SP concentration (in the range of 8.3 to 33.3 g/l) significantly increased the degree of degradation of RB and the reaction rate. However, the use of quasicrystals, in the range of 8.3 to 33.3 g/l, was also important in the modified photocatalytic photo-Fenton process. The best degradation effects of RB (95%) were obtained for the highest SP concentration of 33.3 g/l and the lowest quasicrystal concentration of 8.3 g/l. On the other hand, visual decolourization of RB was obtained with an efficiency of 70% for SP and quasicrystal concentrations of 16.7 g/l and 16.7 g/l, respectively, after 45 minutes, and for SP and quasicrystal concentrations of 33.3 g/l and 8.3 g/l, respectively, after the time of 20 minutes. The best RB degradation effects in the comparative method (UV/Na2CO3·1.5H2O2 without the addition of quasicrystals) were only 52.7%. The obtained results encourage further research to optimize the conditions of the proposed method and to investigate its applicability to other types of dyes and pollutants.