Xianshi Xie, Qiufeng Lin, Haojie Wu, G. Narasimham, T. McNamara, J. Rieser, Bobby Bodenheimer
{"title":"A system for exploring large virtual environments that combines scaled translational gain and interventions","authors":"Xianshi Xie, Qiufeng Lin, Haojie Wu, G. Narasimham, T. McNamara, J. Rieser, Bobby Bodenheimer","doi":"10.1145/1836248.1836260","DOIUrl":null,"url":null,"abstract":"This paper evaluates the combination of two methods for adapting bipedal locomotion to explore virtual environments displayed on head-mounted displays (HMDs) within the confines of limited tracking spaces. We combine a method of changing the optic flow of locomotion, effectively scaling the translational gain, with a method of intervening and manipulating a user's locations in physical space while preserving their spatial awareness of the virtual space. This latter technique is called resetting. In two experiments, we evaluate both scaling the translational gain and resetting while a subject locomotes along a path and then turns to face a remembered object. We find that the two techniques can be effectively combined, although there is a cognitive cost to resetting.","PeriodicalId":89458,"journal":{"name":"Proceedings APGV : ... Symposium on Applied Perception in Graphics and Visualization. Symposium on Applied Perception in Graphics and Visualization","volume":"11 1","pages":"65-72"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings APGV : ... Symposium on Applied Perception in Graphics and Visualization. Symposium on Applied Perception in Graphics and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1836248.1836260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
This paper evaluates the combination of two methods for adapting bipedal locomotion to explore virtual environments displayed on head-mounted displays (HMDs) within the confines of limited tracking spaces. We combine a method of changing the optic flow of locomotion, effectively scaling the translational gain, with a method of intervening and manipulating a user's locations in physical space while preserving their spatial awareness of the virtual space. This latter technique is called resetting. In two experiments, we evaluate both scaling the translational gain and resetting while a subject locomotes along a path and then turns to face a remembered object. We find that the two techniques can be effectively combined, although there is a cognitive cost to resetting.