A discrete whale optimization algorithm for the no-wait flow shop scheduling problem

Sujun Zhang, X. Gu
{"title":"A discrete whale optimization algorithm for the no-wait flow shop scheduling problem","authors":"Sujun Zhang, X. Gu","doi":"10.1177/00202940231180622","DOIUrl":null,"url":null,"abstract":"A discrete whale optimization algorithm (DWOA) is presented to solve the no-wait flow shop scheduling problem (NWFSSP) with the optimization objective makespan. An effective combination of nearest neighbor (NN) and standard deviation heuristics (SDH) is used to acquire initial solutions of the population. After that, three crossover operators, the two-point crossover (TPX), multiple-point crossover (MPX) and job-based crossover (JBX) operators, are designed to mimics the humpback whales hunting process. Moreover, the dynamic transform mechanism of search process is designed to better balance the exploration and exploitation ability of DWOA. In order to further improve the optimization effect of DWOA, the parallel neighborhood search (PNS) and the serial neighborhood search (SNS) are selected to execute the local search and promoting global search scheme, respectively. Finally, to test the performance of DWOA, extensive experiments are conducted on benchmarks designed by Reeves and Taillard, which contain parameters tuning, effectiveness of the improvement strategies in the DWOA and comparison with several existing algorithms. From the experimental results, it is validated that the effectiveness of the improved mechanisms and the performance of the DWOA which can find better makespan values compared with other algorithms for solving NWFSSP.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231180622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A discrete whale optimization algorithm (DWOA) is presented to solve the no-wait flow shop scheduling problem (NWFSSP) with the optimization objective makespan. An effective combination of nearest neighbor (NN) and standard deviation heuristics (SDH) is used to acquire initial solutions of the population. After that, three crossover operators, the two-point crossover (TPX), multiple-point crossover (MPX) and job-based crossover (JBX) operators, are designed to mimics the humpback whales hunting process. Moreover, the dynamic transform mechanism of search process is designed to better balance the exploration and exploitation ability of DWOA. In order to further improve the optimization effect of DWOA, the parallel neighborhood search (PNS) and the serial neighborhood search (SNS) are selected to execute the local search and promoting global search scheme, respectively. Finally, to test the performance of DWOA, extensive experiments are conducted on benchmarks designed by Reeves and Taillard, which contain parameters tuning, effectiveness of the improvement strategies in the DWOA and comparison with several existing algorithms. From the experimental results, it is validated that the effectiveness of the improved mechanisms and the performance of the DWOA which can find better makespan values compared with other algorithms for solving NWFSSP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无等待流水车间调度问题的离散鲸鱼优化算法
针对以最大完工时间为优化目标的无等待流水车间调度问题,提出了一种离散鲸优化算法(DWOA)。采用最近邻法(NN)和标准差启发式法(SDH)的有效结合来获得总体的初始解。之后,设计了三种跨界操作器,即两点跨界(TPX)、多点跨界(MPX)和基于作业的跨界(JBX)操作器,以模拟座头鲸的捕猎过程。设计了搜索过程的动态转换机制,更好地平衡了DWOA的探索和利用能力。为了进一步提高DWOA的优化效果,选择并行邻域搜索(PNS)和串行邻域搜索(SNS)分别执行局部搜索和促进全局搜索方案。最后,为了测试DWOA的性能,在Reeves和Taillard设计的基准上进行了大量的实验,包括参数调优、改进策略在DWOA中的有效性以及与几种现有算法的比较。实验结果验证了改进机制的有效性和DWOA算法的性能,与其他求解NWFSSP的算法相比,DWOA算法可以找到更好的makespan值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Train timetable and stopping plan generation based on cross-line passenger flow in high-speed railway network Enhancing water pressure sensing in challenging environments: A strain gage technology integrated with deep learning approach Photovoltaic MPPT control and improvement strategies considering environmental factors: based on PID-type sliding mode control and improved grey wolf optimization Tracking controller design for quadrotor UAVs under external disturbances using a high-order sliding mode-assisted disturbance observer Evaluating vehicle trafficability on soft ground using wheel force information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1