Neural net approach for constrained state-space realization

J.S. Kim, H. Singh
{"title":"Neural net approach for constrained state-space realization","authors":"J.S. Kim, H. Singh","doi":"10.1109/MWSCAS.1991.252101","DOIUrl":null,"url":null,"abstract":"Using the neural network approach for determination of the constrained state-space realization from Markov parameters of the transfer function is proposed. The neural network approach is suggested for determining realization A, B, and C in such a manner that there are some constraints on some of the elements of A, B, and C. Such constraint cases cannot be achieved using conventional algorithms. A single-layer neural network and heuristic random optimization algorithm are used for constrained state-space realization.<<ETX>>","PeriodicalId":6453,"journal":{"name":"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems","volume":"1 1","pages":"553-556 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1991.252101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using the neural network approach for determination of the constrained state-space realization from Markov parameters of the transfer function is proposed. The neural network approach is suggested for determining realization A, B, and C in such a manner that there are some constraints on some of the elements of A, B, and C. Such constraint cases cannot be achieved using conventional algorithms. A single-layer neural network and heuristic random optimization algorithm are used for constrained state-space realization.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
约束状态空间实现的神经网络方法
提出利用神经网络方法从传递函数的马尔可夫参数确定约束状态空间实现。建议使用神经网络方法来确定实现A、B和C,在这种方式下,A、B和C的某些元素存在一些约束。这种约束情况无法使用传统算法实现。采用单层神经网络和启发式随机优化算法实现约束状态空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linville power plane stability and bandwidth improvements in a minimum-drift video amplifier Computer-aided large-signal analysis-and-control of boost converter-based switching regulators A SPICE macromodel for an adjustable positive voltage regulator An algorithm for lossless transmission line analysis using bounce charts Application of digital microprocessor technology to power metering in the presence of harmonics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1