Evolutionary Robustness Testing of Data Processing Systems Using Models and Data Mutation (T)

Daniel Di Nardo, F. Pastore, Andrea Arcuri, L. Briand
{"title":"Evolutionary Robustness Testing of Data Processing Systems Using Models and Data Mutation (T)","authors":"Daniel Di Nardo, F. Pastore, Andrea Arcuri, L. Briand","doi":"10.1109/ASE.2015.13","DOIUrl":null,"url":null,"abstract":"System level testing of industrial data processing software poses several challenges. Input data can be very large, even in the order of gigabytes, and with complex constraints that define when an input is valid. Generating the right input data to stress the system for robustness properties (e.g. to test how faulty data is handled) is hence very complex, tedious and error prone when done manually. Unfortunately, this is the current practice in industry. In previous work, we defined a methodology to model the structure and the constraints of input data by using UML class diagrams and OCL constraints. Tests were automatically derived to cover predefined fault types in a fault model. In this paper, to obtain more effective system level test cases, we developed a novel search-based test generation tool. Experiments on a real-world, large industrial data processing system show that our automated approach can not only achieve better code coverage, but also accomplishes this using significantly smaller test suites.","PeriodicalId":6586,"journal":{"name":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"7 1","pages":"126-137"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2015.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

System level testing of industrial data processing software poses several challenges. Input data can be very large, even in the order of gigabytes, and with complex constraints that define when an input is valid. Generating the right input data to stress the system for robustness properties (e.g. to test how faulty data is handled) is hence very complex, tedious and error prone when done manually. Unfortunately, this is the current practice in industry. In previous work, we defined a methodology to model the structure and the constraints of input data by using UML class diagrams and OCL constraints. Tests were automatically derived to cover predefined fault types in a fault model. In this paper, to obtain more effective system level test cases, we developed a novel search-based test generation tool. Experiments on a real-world, large industrial data processing system show that our automated approach can not only achieve better code coverage, but also accomplishes this using significantly smaller test suites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型和数据突变(T)的数据处理系统进化鲁棒性检验
工业数据处理软件的系统级测试面临着一些挑战。输入数据可能非常大,甚至达到千兆字节的数量级,并且具有定义输入何时有效的复杂约束。因此,手动生成正确的输入数据以强调系统的鲁棒性(例如,测试如何处理有缺陷的数据)是非常复杂、乏味和容易出错的。不幸的是,这是目前工业上的惯例。在之前的工作中,我们定义了一种方法,通过使用UML类图和OCL约束对输入数据的结构和约束进行建模。自动派生测试以覆盖故障模型中预定义的故障类型。为了获得更有效的系统级测试用例,我们开发了一种新的基于搜索的测试生成工具。在真实世界的大型工业数据处理系统上的实验表明,我们的自动化方法不仅可以实现更好的代码覆盖率,而且还可以使用更小的测试套件来实现这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cost-Efficient Sampling for Performance Prediction of Configurable Systems (T) Refactorings for Android Asynchronous Programming Study and Refactoring of Android Asynchronous Programming (T) The iMPAcT Tool: Testing UI Patterns on Mobile Applications Combining Deep Learning with Information Retrieval to Localize Buggy Files for Bug Reports (N)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1