Scaling Model of Low-Temperature Transport Properties for Molecular and Ionic Liquids

V. Rogankov
{"title":"Scaling Model of Low-Temperature Transport Properties for Molecular and Ionic Liquids","authors":"V. Rogankov","doi":"10.1155/2015/208486","DOIUrl":null,"url":null,"abstract":"The universal scaling concept is applied to the low-temperature range of any liquid states and substances located between the melting () and normal boiling () points far away from the critical region. The physical reason to develop such approach is the revealed collapse of all low-temperature isotherms onto the single universal one argued by the model of fluctuational thermodynamics (FT) proposed recently by author. The pressure reduced by the molecular parameters of the effective short-range Lennard-Jones (LJ) potential depends here only on the reduced density. To demonstrate the extraordinary predictive abilities of the developed low-temperature scaling model it has been applied to the prediction of equilibrium and transport (kinetic and dynamic viscosity, self-diffusion, and thermal conductivity) properties not only for molecular liquids but also for molten organic salts termed ionic liquids (ILs). The best argument in favor of the proposed methodology is the appropriate consistency with the scarce experiments prediction of transport coefficients for ILs on the base of universal scaling function constructed for the simplest LJ-like liquid argon. The only input data of any substance for prediction are the linear approximations of -dependent density and isobaric heat capacity taken from the standard measurements at atmospheric pressure.","PeriodicalId":17290,"journal":{"name":"Journal of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/208486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The universal scaling concept is applied to the low-temperature range of any liquid states and substances located between the melting () and normal boiling () points far away from the critical region. The physical reason to develop such approach is the revealed collapse of all low-temperature isotherms onto the single universal one argued by the model of fluctuational thermodynamics (FT) proposed recently by author. The pressure reduced by the molecular parameters of the effective short-range Lennard-Jones (LJ) potential depends here only on the reduced density. To demonstrate the extraordinary predictive abilities of the developed low-temperature scaling model it has been applied to the prediction of equilibrium and transport (kinetic and dynamic viscosity, self-diffusion, and thermal conductivity) properties not only for molecular liquids but also for molten organic salts termed ionic liquids (ILs). The best argument in favor of the proposed methodology is the appropriate consistency with the scarce experiments prediction of transport coefficients for ILs on the base of universal scaling function constructed for the simplest LJ-like liquid argon. The only input data of any substance for prediction are the linear approximations of -dependent density and isobaric heat capacity taken from the standard measurements at atmospheric pressure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子和离子液体低温输运性质的标度模型
通用结垢概念适用于位于熔点()和正常沸点()之间、远离临界区域的任何液态和物质的低温范围。发展这种方法的物理原因是作者最近提出的涨落热力学模型揭示了所有低温等温线向单一普遍等温线的坍缩。由有效短程Lennard-Jones (LJ)势的分子参数所减少的压力在这里只取决于减少的密度。为了证明所开发的低温缩尺模型的非凡预测能力,它已被应用于预测平衡和输运(动力学和动态粘度,自扩散和导热性)性质,不仅适用于分子液体,也适用于被称为离子液体(ILs)的熔融有机盐。该方法与基于最简单类lj液态氩的通用标度函数的il输运系数的稀缺实验预测相吻合,是支持该方法的最佳理由。用于预测的任何物质的唯一输入数据是在大气压下的标准测量得到的依赖密度和等压热容的线性近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Thermodynamic Degradation Approach to Quantify Human Stress Response Thermodynamics of Low-Dimensional Trapped Fermi Gases Influence of Chemical Reaction on Heat and Mass Transfer Flow of a Micropolar Fluid over a Permeable Channel with Radiation and Heat Generation Kelvin’s Dissymmetric Models and Consistency Conditions of Multicomponent Gas-Liquid Equilibrium and Capillary Condensation Effect of Magnetic Field on Mixed Convection Heat Transfer in a Lid-Driven Square Cavity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1